[1] Wang, P., Guo, Y., Yuan, S., Yan, C., Lin, J., Liu, Z., Lu, Y., Bai, C., Lu, Q., Dai, S. and Cai, C., 2016. Advances in the structure and materials of perovskite solar cells. Research on Chemical Intermediates, 42, 625-639, (2016).
[2] Zhang, W.H. and Cai, B., Organolead halide perovskites: a family of promising semiconductor materials for solar cells. Chinese Science Bulletin, 59, 2092-2101, (2014).
[3] Grätzel, M., The light and shade of perovskite solar cells. Nature materials, 13, 838-842, (2014).
[4] Wu, J., Lan, Z., Lin, J., Huang, M., Huang, Y., Fan, L. and Luo, G., Electrolytes in dye-sensitized solar cells. Chemical reviews, 115, 2136-2173, (2015).
[5] Park, N.G., Perovskite solar cells: an emerging photovoltaic technology. Materials Today, 18, 65-72, (2015).
[6] Boix, P.P., Nonomura, K., Mathews, N. and Mhaisalkar, S.G., Current progress and future perspectives for organic/inorganic perovskite solar cells. Materials today, 17, 16-23, (2014).
[7] Zhang, S., Lanty, G., Lauret, J.S., Deleporte, E., Audebert, P. and Galmiche, L., Synthesis and optical properties of novel organic–inorganic hybrid nanolayer structure semiconductors. Acta Materialia, 57, 3301-3309, (2009).
[8] Tanaka, K., Takahashi, T., Ban, T., Kondo, T., Uchida, K. and Miura, N., Comparative study on the excitons in lead-halide-based perovskite-type crystals CH 3 NH 3 PbBr 3 CH 3 NH 3 PbI 3. Solid state communications, 127, 619-623, (2003).
[9] Luo, S. and Daoud, W.A., Crystal Structure Formation of CH3NH3PbI3-xClx Perovskite. Materials, 9, 123, (2016).
[10] Eperon, G.E., Burlakov, V.M., Docampo, P., Goriely, A. and Snaith, H.J., Morphological control for high performance, solution‐processed planar heterojunction perovskite solar cells. Advanced Functional Materials, 24, 151-157, (2014).
[11] Bing, J., Huang, S., & Ho-Baillie, A. W. A review on halide perovskite film formation by sequential solution processing for solar cell applications. Energy Technology, 8, 1901114, (2020).
[12] Salau, A.M., Fundamental absorption edge in PbI 2: KI alloys. Solar Energy Materials, 2, 327-332, (1980).
[13] Era, M., Hattori, T., Taira, T. and Tsutsui, T., Self-organized growth of PbI-based layered perovskite quantum well by dual-source vapor deposition. Chemistry of materials, 9, 8-10, (1997).
[14] Kaya, Ismail C., Kassio PS Zanoni, Francisco Palazon, Michele Sessolo, Hasan Akyildiz, Savas Sonmezoglu, and Henk J. Bolink. "Crystal Reorientation and Amorphization Induced by Stressing Efficient and Stable P–I–N Vacuum‐Processed MAPbI3 Perovskite Solar Cells." Advanced Energy and Sustainability Research: 2000065, (2021).
[15] Mitzi, D.B., Prikas, M.T. and Chondroudis, K., Thin Film Deposition of Organic− Inorganic Hybrid Materials Using a Single Source Thermal Ablation Technique. Chemistry of materials, 11, 542-544, (1999).
[16] Burschka, J., Pellet, N., Moon, S.J., Humphry-Baker, R., Gao, P., Nazeeruddin, M.K. and Grätzel, M., Sequential deposition as a route to high-performance perovskitesensitized solar cells. Nature, 499, 316-319, (2013).
[17] X. Zheng, Y. Hou, C. Bao, J. Yin, F. Yuan, Z. Huang, K. Song, J. Liu, J. Troughton, N. Gasparini, C. Zhou, Y. Lin, D.-J. Xue, B. Chen, A. K. Johnston, N. Wei, M. N. Hedhili, M. Wei, A. Y. Alsalloum, P. Maity, B. Turedi, C. Yang, D. Baran, T. D. Anthopoulos, Y. Han, Z.-H. Lu, O. F. Mohammed, F. Gao, E. H. Sargent, O. M. Bakr, Nat. Energy, 5, 131 (2020).
[18] Jung, Eui Hyuk, Nam Joong Jeon, Eun Young Park, Chan Su Moon, Tae Joo Shin, Tae-Youl Yang, Jun Hong Noh, and Jangwon Seo. "Efficient, stable and scalable perovskite solar cells using poly (3-hexylthiophene)." Nature 567, 511-515, (2019).
[19] Kong, W., Ye, Z., Qi, Z., Zhang, B., Wang, M., Rahimi-Iman, A. and Wu, H., Characterization of an abnormal photoluminescence behavior upon crystal-phase transition of perovskite CH 3 NH 3 PbI 3. Physical Chemistry Chemical Physics, 17, 16405-16411, (2015).
[20] Baikie, T., Fang, Y., Kadro, J.M., Schreyer, M., Wei, F., Mhaisalkar, S.G., Graetzel, M. and White, T.J., Synthesis and crystal chemistry of the hybrid perovskite (CH 3 NH 3) PbI 3 for solid-state sensitised solar cell applications. Journal of Materials Chemistry A, 1, 5628-5641, (2013).
[21] Takeo Oku, Kosyachenko, Leonid A., ed. Solar Cells: New approaches and reviews. BoD–Books on Demand, chapter 3, 2015.
[22] Malliga, P., Pandiarajan, J., Prithivikumaran, N. and Neyvasagam, K., Influence of film thickness on structural and optical properties of sol–gel spin coated TiO2 thin film. J Appl Phys, 6, 22-28, (2014).
[23] Liang, K., Mitzi, D. B., & Prikas, M. T. Synthesis and Characterization of Organic−Inorganic Perovskite Thin Films Prepared Using a Versatile Two-Step Dipping Technique. Chemistry of Materials, 10, 403–411, (1998).
[24] Yuji Ando, Yuya Ohishi, Kohei Suzuki, Atsushi Suzuki, and Takeo Oku, Rietveld refinement of the crystal structure of perovskite solar cells using CH3NH3PbI3 and other compounds,AIP Conference Proceedings 1929, 020003, (2018).
[25] Fu, Kunwu, Swee Sien Lim, Yanan Fang, Pablo P. Boix, Nripan Mathews, Tze Chien Sum, Lydia H. Wong, and Subodh Mhaisalkar. "Modulating CH 3 NH 3 PbI 3 perovskite crystallization behavior through precursor concentration." Nano: Brief Reports and Reviews, 9, 1440003, (2014).
[26] Elangovan, E. and Ramamurthi, K., A study on low cost-high conducting fluorine and antimony-doped tin oxide thin films. Applied Surface Science, 249, 183-196, (2005).
[27] Jayan, K. Deepthi, and Varkey Sebastian. "A review on computational modelling of individual device components and interfaces of perovskite solar cells using DFT." In AIP Conference Proceedings, 2162, 020036, (2019).