مقاله پژوهشی: تأثیر شرایط و روش لایه‌نشانی در خواص فیزیکی لایه‌های MAPbI3 به منظور استفاده در سلول خورشیدی پروسکایتی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، دانشکدۀ فیزیک، دانشگاه سمنان، سمنان، ایران

2 دانش آموختۀ کارشناسی ارشد، دانشکدۀ فیزیک، دانشگاه سمنان، سمنان، ایران

چکیده

در سال­های اخیر سلول‌های خورشیدی با جاذب پروسکایت به دلیل افزایش فوق­العادۀ بازده، شدیداً مورد توجه محققان قرار گرفته­اند. در این پژوهش لایه­های نازک پروسکایت متیل آمونیم سرب یدید (MAPbI3) به روش رشد دومرحله­ای تهیه شده است. دو روش چرخشی‌ـ‌چرخشی و چرخشی‌ـ‌غوطه­وری شد و ویژگی­های فیزیکی لایه­های به‌دست‌آمده از این روش­ها مقایسه شد. ویژگی­های اپتیکی و ساختاری آن‌ها توسط روش‌های UV-VIS ، XRD و FE-SEM بررسی شده است. نتایج حاصل از بررسی­های ساختاری، فاز مکعبی را برای پروسکایت MAPbI3 نشان داد. همچنین مورفولوژی سطح لایه­‌ها در تصاویر FE-SEM مشخص شد، که تشکیل یک لایۀ منسجم، بدون هیچگونه ترک و ناپیوستگی را تأیید می­کند. نتایج نشان داد که گاف اپتیکی نمونه‌ها در بازۀ eV 59/1- 54/1 است. همچنین اثر تغییر غلظت مادۀ اولیه بر خواص فیزیکی لایه‌های MAPbI3  تهیه‌شده به هر دو روش، مشخص شد. نتایج نشان داد که در هر دو روش با افزایش غلظت PbI2 لایه­های با ضخامت و جذب بیشتر ساخته می­شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Research Paper: Effect of Deposition Condition and Method on Physical Properties of MAPbI3 Layers for Perovskite Solar Cell Purpose

نویسندگان [English]

  • Nafiseh Memarian 1
  • Reza Rajab Bolookat 2
1 Assistant Professor, Faculty of Physics, Semnan University, Semnan, Iran
2 M.Sc. in Physics, Faculty of Physics, Semnan University, Semnan, Iran.
چکیده [English]

In recent years, solar cells with perovskite absorber have attracted considerable attention due to rapid increase in their efficiency. In this research, MAPbI3 layers were coated by a two-step method. Spin-spin and spin-dip methods were studied and physical properties of prepared layers were compared. Their optical and structural properties were investigated by UV-VIS, XRD and FE-SEM techniques. The results of structural analysis showed the formation of cubic phase for MAPbI3 perovskite. In addition, the surface morphology of the layers was determined by FE-SEM images, which confirmed the formation of a uniform and cohesive layer, without any cracks or discontinuities on the surface of layer. Results showed that the optical band gap of the samples are in the range of 1.54-1.59 eV. Furthermore, the effect of precursor concentration on the physical properties of MAPbI3 layers prepared by both methods (spin-spin and spin-dip) was also investigated. The results showed that in both methods, with increasing PbI2 concentration, thicker layers with higher adsorption can be prepared.

کلیدواژه‌ها [English]

  • Perovskite Absorber
  • Methylammonium Lead Iodide
  • Thin Film
  • Spin Coating
  • Dip Coating
[1] Wang, P., Guo, Y., Yuan, S., Yan, C., Lin, J., Liu, Z., Lu, Y., Bai, C., Lu, Q., Dai, S. and Cai, C., 2016. Advances in the structure and materials of perovskite solar cells. Research on Chemical Intermediates42, 625-639, (2016).
[2] Zhang, W.H. and Cai, B., Organolead halide perovskites: a family of promising semiconductor materials for solar cells. Chinese Science Bulletin59, 2092-2101, (2014).
[3] Grätzel, M., The light and shade of perovskite solar cells. Nature materials13, 838-842, (2014).
[4] Wu, J., Lan, Z., Lin, J., Huang, M., Huang, Y., Fan, L. and Luo, G., Electrolytes in dye-sensitized solar cells. Chemical reviews, 115, 2136-2173, (2015).
[5] Park, N.G., Perovskite solar cells: an emerging photovoltaic technology. Materials Today, 18, 65-72, (2015).
[6] Boix, P.P., Nonomura, K., Mathews, N. and Mhaisalkar, S.G., Current progress and future perspectives for organic/inorganic perovskite solar cells. Materials today, 17, 16-23, (2014).
[7] Zhang, S., Lanty, G., Lauret, J.S., Deleporte, E., Audebert, P. and Galmiche, L., Synthesis and optical properties of novel organic–inorganic hybrid nanolayer structure semiconductors. Acta Materialia57, 3301-3309, (2009).
[8] Tanaka, K., Takahashi, T., Ban, T., Kondo, T., Uchida, K. and Miura, N., Comparative study on the excitons in lead-halide-based perovskite-type crystals CH 3 NH 3 PbBr 3 CH 3 NH 3 PbI 3Solid state communications127, 619-623, (2003).
[9] Luo, S. and Daoud, W.A., Crystal Structure Formation of CH3NH3PbI3-xClx Perovskite. Materials, 9, 123, (2016).
[10] Eperon, G.E., Burlakov, V.M., Docampo, P., Goriely, A. and Snaith, H.J., Morphological control for high performance, solution‐processed planar heterojunction perovskite solar cells. Advanced Functional Materials, 24, 151-157, (2014).
[11] Bing, J., Huang, S., & Ho-Baillie, A. W. A review on halide perovskite film formation by sequential solution processing for solar cell applications. Energy Technology8, 1901114, (2020).
[12] Salau, A.M., Fundamental absorption edge in PbI 2: KI alloys. Solar Energy Materials, 2, 327-332, (1980).
[13] Era, M., Hattori, T., Taira, T. and Tsutsui, T., Self-organized growth of PbI-based layered perovskite quantum well by dual-source vapor deposition. Chemistry of materials, 9, 8-10, (1997).
[14] Kaya, Ismail C., Kassio PS Zanoni, Francisco Palazon, Michele Sessolo, Hasan Akyildiz, Savas Sonmezoglu, and Henk J. Bolink. "Crystal Reorientation and Amorphization Induced by Stressing Efficient and Stable P–I–N Vacuum‐Processed MAPbI3 Perovskite Solar Cells." Advanced Energy and Sustainability Research: 2000065, (2021).
[15] Mitzi, D.B., Prikas, M.T. and Chondroudis, K., Thin Film Deposition of Organic− Inorganic Hybrid Materials Using a Single Source Thermal Ablation Technique. Chemistry of materials, 11, 542-544, (1999).
[16] Burschka, J., Pellet, N., Moon, S.J., Humphry-Baker, R., Gao, P., Nazeeruddin, M.K. and Grätzel, M., Sequential deposition as a route to high-performance perovskitesensitized solar cells. Nature, 499, 316-319, (2013).
[17] X. Zheng, Y. Hou, C. Bao, J. Yin, F. Yuan, Z. Huang, K. Song, J. Liu, J. Troughton, N. Gasparini, C. Zhou, Y. Lin, D.-J. Xue, B. Chen, A. K. Johnston, N. Wei, M. N. Hedhili, M. Wei, A. Y. Alsalloum, P. Maity, B. Turedi, C. Yang, D. Baran, T. D. Anthopoulos, Y. Han, Z.-H. Lu, O. F. Mohammed, F. Gao, E. H. Sargent, O. M. Bakr, Nat. Energy5, 131 (2020).
[18] Jung, Eui Hyuk, Nam Joong Jeon, Eun Young Park, Chan Su Moon, Tae Joo Shin, Tae-Youl Yang, Jun Hong Noh, and Jangwon Seo. "Efficient, stable and scalable perovskite solar cells using poly (3-hexylthiophene)." Nature 567, 511-515, (2019).
[19] Kong, W., Ye, Z., Qi, Z., Zhang, B., Wang, M., Rahimi-Iman, A. and Wu, H., Characterization of an abnormal photoluminescence behavior upon crystal-phase transition of perovskite CH 3 NH 3 PbI 3Physical Chemistry Chemical Physics17, 16405-16411, (2015).
[20] Baikie, T., Fang, Y., Kadro, J.M., Schreyer, M., Wei, F., Mhaisalkar, S.G., Graetzel, M. and White, T.J., Synthesis and crystal chemistry of the hybrid perovskite (CH 3 NH 3) PbI 3 for solid-state sensitised solar cell applications. Journal of Materials Chemistry A1, 5628-5641, (2013).
[21] Takeo Oku, Kosyachenko, Leonid A., ed. Solar Cells: New approaches and reviews. BoD–Books on Demand, chapter 3, 2015.
[22] Malliga, P., Pandiarajan, J., Prithivikumaran, N. and Neyvasagam, K., Influence of film thickness on structural and optical properties of sol–gel spin coated TiO2 thin film. J Appl Phys6, 22-28, (2014).
[23] Liang, K., Mitzi, D. B., & Prikas, M. T. Synthesis and Characterization of Organic−Inorganic Perovskite Thin Films Prepared Using a Versatile Two-Step Dipping Technique. Chemistry of Materials, 10, 403–411, (1998). 
[24] Yuji Ando, Yuya Ohishi, Kohei Suzuki, Atsushi Suzuki, and Takeo Oku, Rietveld refinement of the crystal structure of perovskite solar cells using CH3NH3PbI3 and other compounds,AIP Conference Proceedings 1929, 020003, (2018).
[25] Fu, Kunwu, Swee Sien Lim, Yanan Fang, Pablo P. Boix, Nripan Mathews, Tze Chien Sum, Lydia H. Wong, and Subodh Mhaisalkar. "Modulating CH 3 NH 3 PbI 3 perovskite crystallization behavior through precursor concentration." Nano: Brief Reports and Reviews, 9, 1440003, (2014).
[26] Elangovan, E. and Ramamurthi, K., A study on low cost-high conducting fluorine and antimony-doped tin oxide thin films. Applied Surface Science249, 183-196, (2005).
[27] Jayan, K. Deepthi, and Varkey Sebastian. "A review on computational modelling of individual device components and interfaces of perovskite solar cells using DFT." In AIP Conference Proceedings, 2162, 020036, (2019).