مقالۀ پژوهشی: بررسی سنجۀ هندسی درهم‌تنیدگی تولیدشده توسط هامیلتونی پیچش تک‌محوری در سامانه‌های اسپینی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه فیزیک، دانشکدۀ علوم، دانشگاه شهید چمران اهواز، اهواز، ایران

2 دانش آموختۀ کارشناسی ارشد، گروه فیزیک، دانشکدۀ علوم، دانشگاه شهید چمران اهواز، اهواز، ایران

3 استادیار، گروه فیزیک، دانشکده علوم، دانشگاه شهید چمران اهواز، اهواز، ایران

چکیده

چکیده
با توجه به کاربردهای فراوان حالت‌های درهم‌تنیده و ضرورت تعیین کمی میزان درهم‌تنیدگی ، در این مقاله نحوة ایجاد درهم‌تنیدگی در حالت‌های دوکیوبیتی جداپذیر با اعمال هامیلتونی پیچش تک‌محوری، در غیاب میدان مغناطیسی و حضور میدان مغناطیسی با معرفی سنجۀ هندسی مطالعه شده است. عبارت دقیقی برای سنجۀ هندسی درهم‌تنیدگی بدون محاسبۀ حالت سامانه در حال تحول، با استفاده از روش مقدار چشمداشتی اسپین، محاسبه شده است سپس با رسم نمودار آن سنجه نسبت به زمان به بررسی عوامل مؤثر در بیشینه‌سازی درهم‌تنیدگی پرداخته‌ایم . نتایج نشان داد که برای به‌دست آوردن بیشینه درهم‌تنیدگی توسط هامیلتونی پیچش تک محوری حول محور در غیاب میدان مغناطیسی، باید حالت اولیه، ضرب تانسوری ویژه حالت‌های مؤلفه‌های یا بردار اسپین کل باشد. ویژه حالت مؤلفۀ اسپین کل، تحت تأثیر هامیلتونی پیچش تک محوری حول محور در غیاب میدان مغناطیسی درهم‌تنیده نیست اما تحت تأثیر هامیلتونی پیچش تک محوری حول محور با حضور میدان مغناطیسی در راستای به بیشینه درهم‌تنیدگی می‌رسد. همچنین برای همۀ حالت‌ها، بسامد درهم‌تنیدگی تایع افزایشی از میدان مغناطیسی است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Research Paper: Study of Geometric Measure of Entanglement Produced by One-axis Counter Twisting Hamiltonian in Spin Systems

نویسندگان [English]

  • Azita Naji 1
  • Mahmood Zeheiry 2
  • Mehrzad Ashrafpour 3
1 Assistant Professor, Department of Physics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
2 M. Sc. in Physics, Department of Physics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
3 Assistant Professor, Department of Physics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
چکیده [English]

Generation of entanglement in separable two qubits states using the one-axis counter twisting Hamiltonian in the presence/absence of a magnetic field is studied by introducing the geometric measure of entanglement. The exact expression for the geometric measure is obtained without calculating the time evolution of the system state using the method of the expectation values of spin. The graphs of this measure as a function of time are plotted. The results show that in order to obtain the maximum entanglement under the influence of one-axis counter twisting Hamiltonian around  axis in absence of magnetic field, the system initially must be in a tensor product of  or  eigenstates. Also, the system initially in the  eigenstates under the influence of one-axis counter twisting Hamiltonian around  axis in absence of a magnetic field is not entangled, but, under the influence of one-axis counter twisting Hamiltonian around  axis in presence of a magnetic field in  direction the entanglement for this state becomes maximum. For all states, the frequency of entanglement is an increasing function of the magnetic field.

کلیدواژه‌ها [English]

  • Entanglement
  • Geometric Measure
  • One-axis Counter Twisting Hamiltonian
  • Mean Value of Spin
      [1]       Sarkar D., “On measures of quantum entanglement”, Int. J. Quantum Inf, 14 Issue 06, 1640024 (2016).
      [2]       Naji A., Hamzeofi R. and Afshar D., “Entanglement teleportation via two qubits Heisenberg interaction in Jaynes-Cummings model under intrinsic decoherence”, Iranian J. Phys. Res. 19, 03, 59-62 (2019).
      [3]       Liu X. S., Long G. L., Tong D. M. and Li F., “General scheme for super dense coding between multi-parties”, Phys. Rev. A 65, 022304-07 (2002).
      [4]       Peres A., “Separability criterion for density matrices”, Phys. Rev. Lett. 77, 1413-1415 (1996).
      [5]       Hollands S. and Sanders K., “Entanglement measure and their properties in quantum field theory”, arXiv:1702.04924 quant-ph (2017).
      [6]       Shimony A., “Degree of entanglement”, Ann. N. Y. Acad. Sci. 755, 675-679 (1995).
      [7]       Frydryszak A. M. and Tkachuk V. M., “Geometric measure of entanglement for pure states and mean value of spin”, arXiv:1211.6472 quant-ph.

      [8]       Wei T. C. and Goldbart P. M., “Geometric measure of  entanglement and applications to bipartite and multipartite quantum states”, Phys. Rev. A 68, 042307-20 (2003).

      [9]       Tamaryan L., Park D. K. and Tamaryan S., “Analytic expressions for geometric measure of three qubit states”, Phys. Rev. A 77, 022325-30 (2008).
     [10]     Kitagawa M. and Ueda M., “Squeezed spin states”, Phys. Rev. A. 47(6), 5138-5143 (1993).
     [11]     Wang X. and Sanders B. C., “Spin squeezing and pairwise entanglement for symmetric multiqubit states”, Phys. Rev. A. 68, 012101-6 (2003).
     [12]     Jafarpour M. and Akhound A., “Entanglement and squeezing of multi-qubit systems using a two-axis countertwisting Hamiltonian with an external field”, Phys. Lett. A 372, 2374-2379 (2008).
     [13]     Naji A. and Jafarpour M., “Squeezing and entanglement in multi-qutrit systems”, Quant. Info. Process. 12, 2917-2933 (2013).