[1] Wang W., Duan W., Ahmed S., Mallouk T. E., and Sen A., Small power: Autonomous nano- and micromotors propelled by self-generated gradients, Nano Today, 8 (5):531 2013.
[2] Brambilla M., Ferrante E., Birattari M., and Dorigo M., Swarm robotics: a review from the swarm engineering perspective, Swarm Intelligence, 7 (1):1 2013.
[3] Khadem S.M.J. and Klapp Sabine H.L., Delayed feedback control of active particles: a controlled journey towards the destination. Phys. Chem. Chem. Phys. 21, 13776, 2019.
[4] Golestanian R., Collective Behavior of Thermally Active Colloids, Phys. Rev. Lett., (3):038303, 2012.
[5] Stenhammar J., Wittkowski R., Marenduzzo D., and Cates M.E., Activity-Induced Phase Separation and Self-Assembly in Mixtures of Active and Passive Particles, Phys. Rev. Lett., 114 (1):018301, 2015.
[6] Sokolov A., Aranson I.S., Kessler J.O., Goldstein R.E., Concentration dependence of the collective dynamics of swimming bacteria, Phys. Rev. Lett., 98, 158102, 2007.
[7] Palacci J., Sacanna S., Steinberg A.P., Pine D.J., Chaikin P.M., Living crystals of light-activated colloidal surfers, Science, 339, 936, 2013.
[8] Fodor E., Guo M., Gov N.S., Visco P., Weitz D.A., van Wijland F., Activity-driven fluctuations in living cells, Europhys. Lett. 110, 48005, 2015.
[9] Turlier H., Fedosov D.A., Audoly B., Auth T., Gov N.S., Sykes C., Joanny J.-F., Gompper G., Betz T., Equilibrium physics breakdown reveals the active nature of red blood cell flickering, Nat. Phys. Online, 2016.
[10] Lavrentovich O.D., Active colloids in liquid crystals, Current Opinion in colloid & Interface Science, 21, 97-109, 2016.
[11] Bechinger C., Di Leonardo R., Lowen H., Reichhardt C., Volpe G., and Volpe G., Active particles in complex and crowded environments, Rev. Mod. Phys., 88 (4):045006, 2016.
[12] Selmke M., Khadka U., Bregulla A.P., Cichos F., and Yang H., Theory for controlling individual self-propelled micro-swimmers by photon nudging I: directed transport, Phys. Chem. Chem. Phys., 20, 10502, 2018.
[13] Rahimi Tabar M.R., Analysis and Data-Based Reconstruction of Complex Nonlinear Dynamical Systems: Using the Methods of Stochastic Processes, Springer, Switzerland, 2019.
[14] Sau Fa K., Langevin equation with time dependent linear force and periodic load force: Stochastic resonance, Eur. J. Phys. 2017.
[15] Duan J., An Introduction to Stochastic Dynamics, Cambridge University Press, New York, 2015.
[16] Snook I., The Langevin and Generalized Langevin Approach to the Dynamics of Atomic, Polymeric and Colloidal Systems, Elsevier, Amsterdam, 2007.
[17] Pavliotis G.A., Stochastic Processes and Application: Diffusion Processes, the Fokker–Planck and Langevin Equations, Springer, New York, 2014.
[18] Leimkuhler B., Matthews C., Molecular Dynamics: With Deterministic and Stochastic Numerical Methods, Springer, 2015.
[19] Carmona P., Existence and uniqueness of an invariant measure for a chain of oscillators in contact with two heat baths, Stochastic Process. Appl. 117 (8), 1076–1092, 2007.
[20] Schweitzer F., An agent-based framework of active matter with applications in biological and social systems, Eur. J. Phys. 2018.