مقاله پژوهشی: رفتار ذرات خودران مغناطیسی در حضور میدان مغناطیسی همگن خارجی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترا، گروه فیزیک، دانشکده فیزیک- شیمی، دانشگاه الزهرا، تهران، ایران

2 دانشیار، گروه فیزیک، دانشکده فیزیک- شیمی، دانشگاه الزهرا، تهران، ایران

چکیده

رفتار شناگرهای مغناطیسی در حضور میدان مغناطیسی در این مقاله شبیه‌سازی شده‌ است. سیستم مورد بررسی از شناگرها یا ذرات کروی خودران مغناطیسی معلق در یک جعبه تشکیل می‌شود. میدان مغناطیسی همگن با تقارن دایره‌ای در این پژوهش به‌کار برده شده و از برهم‌کنش‌های ذره با ذره، ذره با دیواره و برهم‌کنش‌های دوقطبی-دوقطبی نیز صرفنظر شده ‌است. برای توضیح حرکت ذرات از معادلۀ لانژون و برای تحول تابع توزیع چگالی احتمال از معادلۀ فوکر-پلانک استفاده شده‌ است. حل این معادلات در حالت پایا، رفتار جمعی این ذرات مغناطیسی را نشان می‌دهد. ذرات در غیاب میدان مغناطیسی به‌طور یکنواخت در فضای جعبه پخش می‌شود. حرکت ذرات را می‌توان با اعمال میدان مغناطیسی خارجی کنترل کرد. ذرات در حضور میدان مغناطیسی همگن خارجی در مرزهای جعبه متمرکز می‌شود و اگر میدان مغناطیسی تابع نمایی فاصله باشد، ذرات در وسط کانال جمع می‌شود. این نوع پژوهش‌ها در تحویل هدفمند دارو به بافت‌های آسیب‌دیده و جداسازی ذرات مغناطیسی کاربرد دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Self-propelled Magnetic Particles in the Presence of an External Homogenous Magnetic Field

نویسندگان [English]

  • Sonia Mohammad Hosseini Toramuni 1
  • Farinaz Roshani 2
1 Ph. D. Student, Department of Physics, Faculty of Physics and Chemistry, Alzahra University, Tehran, Iran.
2 Associate Professor, Department of Physics, Faculty of Physics and Chemistry, Alzahra University, Tehran, Iran
چکیده [English]

In this paper, the behavior of the magnetic swimmers has been simulated in the presence of an external magnetic field. The studied system is formed of spherical self-propelled particles that have magnetic properties and are suspended in a box. We have applied a homogeneous magnetic field with circular symmetry. The particle-to-particle, particle-to-wall, and bipolar-bipolar interactions have been ignored. The motion of particles has been described by the Langevin equation, and the Fokker-Planck equation has been used for the expression of the evolution of the probability density distribution function. In the steady-state, solving these equations shows the collective behavior of these magnetic particles. In the absence of an external magnetic field, these particles are smoothly distributed in the box. The motion of particles has been controlled by an external magnetic field. Applying an externally homogeneous magnetic field, these particles are concentrated at boundaries. If the magnetic field is an exponential function of distance, particles will collect in the middle of the box. This type of research has applications in targeted drug delivery to damaged tissues and the separation of magnetic particles.

کلیدواژه‌ها [English]

  • Spherical self-propelled particles
  • magnetic particles
  • homogenous magnetic field
Wang W., Duan W., Ahmed S., Mallouk T. E., and Sen A., Small power: Autonomous nano- and micromotors propelled by self-generated gradients,  Nano Today, 8 (5):531 2013.
[2] Brambilla M., Ferrante E., Birattari M., and Dorigo M., Swarm robotics: a review from the swarm engineering perspective,  Swarm Intelligence, 7 (1):1 2013.
[3] Khadem S.M.J. and Klapp Sabine H.L., Delayed feedback control of active particles: a controlled journey towards the destination. Phys. Chem. Chem. Phys. 21, 13776, 2019.
[4] Golestanian R., Collective Behavior of Thermally Active Colloids,  Phys. Rev. Lett., (3):038303, 2012.
[5] Stenhammar J., Wittkowski R., Marenduzzo D., and Cates M.E., Activity-Induced Phase Separation and Self-Assembly in Mixtures of Active and Passive Particles,  Phys. Rev. Lett., 114 (1):018301, 2015.
[6] Sokolov A., Aranson I.S., Kessler J.O., Goldstein R.E., Concentration dependence of the collective dynamics of swimming bacteria, Phys. Rev. Lett., 98, 158102, 2007.
[7] Palacci J., Sacanna S., Steinberg A.P., Pine D.J., Chaikin P.M., Living crystals of light-activated colloidal surfers, Science, 339, 936, 2013.
[8] Fodor E., Guo M., Gov N.S., Visco P., Weitz D.A., van Wijland F., Activity-driven fluctuations in living cells, Europhys. Lett. 110, 48005, 2015.
[9] Turlier H., Fedosov D.A., Audoly B., Auth T., Gov N.S., Sykes C., Joanny J.-F., Gompper G., Betz T., Equilibrium physics breakdown reveals the active nature of red blood cell flickering, Nat. Phys. Online, 2016.
[10] Lavrentovich O.D., Active colloids in liquid crystals, Current Opinion in colloid & Interface Science, 21, 97-109, 2016.
[11] Bechinger C., Di Leonardo R., Lowen H., Reichhardt C., Volpe G., and Volpe G., Active particles in complex and crowded environments,  Rev. Mod. Phys., 88 (4):045006, 2016.
[12] Selmke M., Khadka U., Bregulla A.P., Cichos F., and Yang H., Theory for controlling individual self-propelled micro-swimmers by photon nudging I: directed transport,  Phys. Chem. Chem. Phys., 20, 10502, 2018.
[13] Rahimi Tabar M.R., Analysis and Data-Based Reconstruction of Complex Nonlinear Dynamical Systems: Using the Methods of Stochastic Processes, Springer, Switzerland, 2019.
[14] Sau Fa K., Langevin equation with time dependent linear force and periodic load force: Stochastic resonance, Eur. J. Phys. 2017.
[15] Duan J., An Introduction to Stochastic Dynamics, Cambridge University Press, New York, 2015.
[16] Snook I., The Langevin and Generalized Langevin Approach to the Dynamics of Atomic, Polymeric and Colloidal Systems, Elsevier, Amsterdam, 2007.
[17] Pavliotis G.A., Stochastic Processes and Application: Diffusion Processes, the Fokker–Planck and Langevin Equations, Springer, New York, 2014.
[18] Leimkuhler B., Matthews C., Molecular Dynamics: With Deterministic and Stochastic Numerical Methods, Springer, 2015.
[19] Carmona P., Existence and uniqueness of an invariant measure for a chain of oscillators in contact with two heat baths, Stochastic Process. Appl. 117 (8), 1076–1092, 2007.
[20] Schweitzer F., An agent-based framework of active matter with applications in biological and social systems, Eur. J. Phys. 2018.