مقاله پژوهشی: ویژگی‌های ساختاری، الکترونی و اپتیکی انبوهه و تک لایۀ دی کلکوژنیدهای آهن FeX2 (X=S, Se, Te) با استفاده از نظریه تابعی چگالی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه فیزیک، دانشکده علوم پایه، دانشگاه آیت ا... بروجردی، بروجرد، ایران

2 دانش‌آموخته کارشناسی ارشد، گروه فیزیک، دانشکده علوم پایه، دانشگاه آیت ا... بروجردی، بروجرد، ایران

چکیده

در این مطالعه ویژگی­های ساختاری، الکترونی و اپتیکی دی کلکوژنیدهای آهن FeX2 (X=S, Se, Te) در حالت انبوهه و تک لایه با استفاده از روش امواج تخت بهساخته خطی با پتانسیل کامل (FP-LAPW) در چارچوب نظریه تابعی چگالی (DFT) و با استفاده از کد محاسباتی Wien2k مورد بررسی قرار گرفته است. نتایج به دست آمده نشان می­دهند که ترکیبات FeX2   در حالت انبوهه، نیمه­رسانای غیرمغناطیسی با شکاف مستقیم در نقطه گاما هستند. در حالی که این ترکیبات در حالت تک لایه، فرومغناطیس بوده و ویژگی فلزی از خود نشان می­دهند. ساختار نواری و شکاف انرژی انبوهه FeX2 با تقریب­های GGA-PBE و GGA-mbj محاسبه و مورد مقایسه قرار گرفته­اند. نتایج حاصله نشان می­دهد که تابع بک جانسون مقدار بهتری برای شکاف انرژی پیشنهاد می­دهد. تمامی طیف­های اپتیکی مانند قسمت حقیقی و موهومی تابع دی­الکتریک، ضریب جذب، ضریب بازتاب، ضریب شکست، ضریب خاموشی، رسانندگی و طیف اتلاف انرژی الکترون در هر دو حالت انبوهه و تک لایه محاسبه و نتایج گزارش و بررسی شده است. با توجه به نتایج بدست آمده در محدوده انرژی فرابنفش، ضریب جذب و ضریب بازتاب تمامی ترکیبات FeX2  در حالت انبوهه به مراتب بیشتر از حالات تک لایه است و با توجه به مقدار کمابیش بزرگ این ضرایب، استفاده از ساختارهای انبوهه به منظور محافظ موج الکترومغناطیس فرابنفش در این محدوده انرژی مفیدتر است. در حالی که در محدوده نور مرئی، با توجه به یکسان بودن ضریب جذب و کمتر بودن ضریب بازتاب حالت تک لایه نسبت به حالت انبوهه، استفاده از ساختارهای تک لایه به منظور لایه­های جاذب در سلول­های خورشیدی دارای بازدهی بیشتری می­باشد. ضریب جذب بالا و پهن در ناحیه نورمرئی و فرابنفش­، این ترکیبات را گزینه­های مناسبی برای استفاده در ابزار فوتوالکتریک و سلول­های خورشیدی می­کند. لازم به ذکر است، از آنجایی که ترکیبات تک لایه دارای ویژگی مغناطیسی می­باشند، تمامی محاسبات حالت تک لایه در حالت اسپین قطبیده انجام شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Research Paper: Structural, Electronic and Optical Properties of Bulk and Monolayer Iron Dichalcogenide FeX2 (X= S, Se, Te) from Density Functional Theory

نویسندگان [English]

  • Razieh Beiranvand 1
  • Vahid Mehrabi 2
1 Assistant Professor, Physics Group, Department of Basic Science, Ayatollah Boroujerdi University, Boroujerd, Iran.
2 M. Sc. Graduated, Physics Group, Department of Basic Science, Ayatollah Boroujerdi University, Boroujerd, Iran
چکیده [English]

In this work, the structural, electronic, and optical properties of bulk and monolayer of Iron dichalcogenides FeX2 (X= S, Se, Te) have been investigated using the full potential linearized augmented plane wave (FP-LAPW) in the framework of density functional theory (DFT) with Wien2k simulation package. The calculated results show that FeX2 compounds in the bulk structure are non-magnetic semiconductors with a direct gap at the Γ point, while the monolayer compounds are ferromagnetic with metallic character. The band structure and energy gap of bulk and monolayer structures of FeX2 are calculated using GGA-PBE and GGA-mbj approximations that Becke-Johnson functional gives us better results for band gaps. All-optical properties such as real and imaginary parts of the dielectric function, absorption and reflection coefficients, refractive and extinction index, conductivity, and electron energy loss spectrum have been calculated and analyzed for bulk and monolayer. The High amplitude and wide absorption coefficient in the visible and ultraviolet region make these compounds a good candidate for use in photoelectric instruments and solar cells. Since monolayer compounds show magnetic properties, all calculations for monolayer compounds are performed in the spin-polarized form.

کلیدواژه‌ها [English]

  • Iron Dichalcogenide
  • Density Functional Theory
  • Electronic Properties
  • Optical Properties
  • Spin-polarized

[1] Novoselov K. S., Geim A. K., Morozov S. V., Jianng D., Zhang Y., Dubonos S. V., Grigorieva I. V., and Firsov A. A., Electric Field Effect in Atomically Thin Carbon Films, Science, 306, 666-669, 2004.

 

[2] Kim K. K., Hsu A., Jia X., Kim S. M., Shi Y., Hofman M., Nezich D., Rodrigues-nieva J. F., Dresselhaus M., Palacios T., and Kong J., Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition, Nano Letters ,12,161-166, 2012.
 
[3]Wang Q. H., Kalantar-Zadeh K., Kis A., Coleman J. N., and Strano M. S., Electronics and Optoelectronicsof Two-Dimensional Transition Metal Dichalcogenides, Nature Nanotechnology,7,699-712 , 2012.
 

[4] Li L., Chen Z., Hu Y., Wang X., Zhang T., Chen W., Wang Q., Single-Layer Single-Crystalline SnSe Nanosheets, Journal of the American Chemical Society ,135,1213-1216, 2013.

 

[5] Hu J., Liu X., Yue C. L., Liu J. Y., Zhu H. W., He J. B., Wei J., Mao Z. Q., Antipina L. Y., Popov Z. I., Sorokin P. B., Liu T. J., Adams P.W., Radmanesh S. M. A., Spinu L., Ji H., Natelson D., Enhanced electron coherence in atomically thin Nb3SiTe6, Nature Physics, 11, 471-476, 2015.

 

[6] Vittal R., and Ho K. C., Zinc oxide based dye-sensitized solar cells, A review Renewable and Sustainable energy reviews,70, 920-935, 2017.
 
[7] Tan Ch., Sun D., Xu D., Tian X., Huang Y., Tuning electronic structure and optical properties of ZnO monolayer by Cd doping, Ceramics International ,42, 10997-11002, 2016.
 
[8] Dadsetani M., Beiranvand R., Optical properties of alkaline earth metal oxides from first principles, Solid state sciences,11, 2099-2105, 2009.
 
[9] Dadsetani M., Beiranvand R., The effect of oxygen impurity on the electronic and optical properties of calcium, strontium and barium chalcogenide compounds, Iranian Journal of Physics Research, 10, 187-196, 2010.
 
[10] Kwon H. J., Thanikaikarasan S., Mahalingam T., Park K. H., Sanjeeviraja C., and Kim Y. D., Characterization of electrosynthesized iron diselenide thin films, Journal of Materials Science, Materials in Electronics, 19, 1086-1091, 2008.
 
[11] Puthussery J., Seefeld S., Berry N., Gibbs M., and Law M., Colloidal iron pyrite (FeS2) nanocrystal inks for thin-film photovoltaics, Journal of the American Chemical Society,133, 716-719, 2011.
 
[12] Tian X.H., and Zhang J.M., The structural, elastic, electronic and optical properties of orthorhombic FeX2 (X= S, Se, Te),Superlattices and Microstructures,119, 201-211, 2018.
 
[13] Lan M., Xiang G., Nie Y., Yang  D., Zhang X., The static and dynamic magnetic properties of monolayer iron dioxide and iron dichalcogenides, RSC advances,6,  31758-31761, 2016.
 
[14] Gokoglu G., and Ethem A., Half metallicity and pressure-induced electronic structure of monolayer FeX2 (X = S, Se), Materials Research Express, Materials Research Express,4,116305-116313 , 2017.
 
[15] Li Y., Shi J., Mi Y., Sui X., Xu H., and Liu X., Ultrafast carrier dynamics in two-dimensional transition metal dichalcogenides, Journal of Materials Chemistry C ,7, 4304-4319, 2019.
[16] Ataca C., Sahin H., and Ciraci S., Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure, The Journal of Physical Chemistry C ,116, 8983-8999, 2012.
 
[17]Ghosh A., and Thangavel R., Electronic structure and optical properties of iron based chalcogenide FeX2 (X= S, Se, Te) for photovoltaic applications: a first principle study, Indian Journal of Physics,91, 1339-1344, 2017.
 
[18]Bither T. A., Bouchard R. J., Cloud W. H., Donohue P.C., Siemons W.  J., Transition metal pyrite dichalcogenides  High-pressure synthesis and correlation of properties, Inorganic Chemistry,7, 2208-2220, 1968.
 
[19] Lan M., Xiang G., Nie Y., Yang D., Zhang X., The static and dynamic magnetic properties of monolayer iron dioxide and iron dichalcogenides, RSC advances,6, 31758-31761, 2016.
 
[20] Huang S., He Q., Chen W., Qiao Q., Zai J., and Qian X., Ultrathin FeSe2 nanosheets: controlledsynthesis and application as a heterogeneous catalyst in dyesensitized solar cells, Chemistry–A European Journal , 21, 4085-4091, 2015.
 
[21] Shi Y., Li H., Li L.J., Recent advances incontrolled synthesis of two- dimensional transition metaldichalcogenides via vapour deposition techniques, Chemical Society Reviews ,44, 2744-2756, 2015.
 
[22] Bosi M., Growth and synthesis of mono and few-layers transition metal dichalcogenides by vapour techniques, RSCAdvances,5, 75500-75518, 2015.
 
[23] Manzeli S., Ovchinnikov D., Pasquier D., Yazyev O.V., Kis A., 2D transition metal dichalcogenides,Nature Reviews Materials,2, 1-15, 2017.
 
[24] Blaha P., Schwarz K., Madsen G.K.H., Kvasnicka D., Luitz J., WIEN2K, An Augmented Plane Wave + Local Orbitals Program For Calculating Crystal Properties, wien2k_12.1 (Release 27.02.2012)
[25] Perdew J.P., Burke K., and Ernzerhof M. Generalized gradient approximation made simple, Physical Review Letters,77,18-28, 1996.
 
[26]Tran F., Blaha P., Accurate band gaps ofsemiconductors and insulators with a semilocal exchange-correlationpotential, Physical review letters,102, 226401, 2009.
 
[27] Ataca C., Sahin H., and Ciraci S., Stable, single-layerMX2 transition-metal oxides and dichalcogenides in a honeycomb-likestructure, The Journal of Physical Chemistry C , 116, 8983-8999, 2012.
 
[28] Lan M., Xiang G., Nie Y., Yang D., and Zhang X., The static and dynamic magnetic properties of monolayer iron dioxide and iron dichalcogenides , RSC Advances,38,31758-31761 , 2016.
 
[29] Gokoglu G., andAkturk E., Theoretical investigation of lithium adsorption, diffusion and coverage on MX2 (M= Mo, W; X= O, S, Se, Te) monolayers, Applied Surface Science425, 301-306, 2017.
 
[30]Tyuterev V.G., Vast N, Murnaghan’s equation of state for the electronic ground state energy, Computational materialsscience , 38, 350-353, 2006.

[31] Gudelli V. K., Kanchana V., Valtheeswaran G., Valsakumar M. C., and Mahanti S. D., Thermoelectric properties of marcasite and pyrite FeX2(X = Se, Te): a first principle study,RSC Advances,19,9424-9431, 2014.

 
[32] Zhao C., Wu B., Chen J., Li Y., and Chen Y., International Journal of Minerals, Metallurgy and Materials,7,671, 2013.
 
[33] Ganga B.G., Ganeshraj C., Gopal Krishn A., and Santhosh P.N., Iranian Journal of Physics Research, 15,204, 2015.
 
[34] Mahalingam T., Thanikaikarasan S., Chandramohan R., Raja M., Sanjeeviraja C. , Kim J.H., Kim Y. D., Effects of bath temperature inelectrodeposited FeSe2 thin films, Materials Chemistry and Physics,106, 369-374, 2007.
 
[35] Ennaoui A., Fiechter S., Pettenkofer C., Alonso-Vante N., Buker K., Bronold M., Hopfner Ch., and Tributsch H., Iron disulfide for solar energy conversion,Solar Energy Materials and Solar Cells,29, 289-370, 1993.
 
[36] Schlegel A., and Wachter P, Optical properties, phonons andelectronic structure of iron pyrite (FeS2), Journal of Physics C: Solid State Physic,9 , 3363-3369, 1976.

[37] J. C. Marinace, Energy Bands in Periodic Lattices Green's Function Method, Physical Review ,124, 1786-1796, 1975.

 
[38] Binxia Y., Weiling L., and Shan-tung T., One-stepsynthesis of cubic FeS2 and flower-like FeSe 2 particles by asolvothermal reduction process,  Dalton transactions, 41, 772-776, 2012.
 
[39] Ambrosch-Draxl  C., and Sofo J. O., Linear opticalproperties of solids within the full-potential linearized augmentedplanewave method, Computer physics communications , 175, 1-14, 2006.