[1] Ress M.J., In: Gbbons W.G, Siklos S., editors. The Very Early Universe. Cambridge: Cambridge University Press; 1993.
[2] Ruderman M.A., Shuttherland P.G., Theory of pulsars-Polar caps, sparks, and coherent microwave radiation, Appl. Phys. 196, 51, 1975.
[3] Liang E.P., Wilks S.C., Tabak M., Pair Production by Ultraintense Lasers, Phys. Rev. Lett., 81, 4887, 1998; Gahn C., Tsakiris G.D., Pretzler G., et al., Generation positrons with femtosecond-laser pulses, Appl. Phys. Lett., 77, 2662, 2000.
[4] Berezhiani V.I., Tskhakaya D.D., Shukla P. K., Pair production in a strong wake field driven by an intense short laser pulse, Phys. Rev. A, 46, 6608, 1992;
Marklund M., Shukla P.K., Nonlinear collective effects in photon-photon and photon-plasma interactions, Rev. Mod. Phys., 78, 591, 2006.
[5] Helander P., and Ward D.J., Positron Creation and Annihilation in Tokamak Plasmas with Runaway Electrons, Phys. Rev. Lett., 90, 135004, 2003.
[6] Mourou G.A., Barty C.P.J., Perry M.D., Ultrahigh-Intensity Lasers: Physics of Extreme on a Tabletop, Phys. Today, 51, 22, 1998.
[7] Khan S. A., Ayub M. K., and Ahmad Ali, Low frequency electromagnetic oscillations in dense degenerate electron-positron pair plasma, with and without ions, Physics of plasma,19, 102104, 2012.
[8] Trivelpiece A.W., Comments Plasma Phys. Controlled Fusion, 1, 57, 1972.
[9] Zank G.P., and Greaves R.G., Linear and nonlinear modes in nonrelativistic electron-positron plasmas, Phy. Rev. E, 51, 6079, 1995.
[10] Surko C.M., Levental M., Passner A., Positron Plasma in the Laboratory, Phys.Rev. Lett. 62, 901-904, 1989.
[11] Shatashvili N.L., Rao N.N., Localized nonlinear structures of intense electromagnetic waves in two-electron-temperature electron–positron–ion plasmas, Phys. Plasmas, 6, 66-71, 1999.
[12] Tsintsatdze L.N., Stability of a charged plane surface of an electron–positron–ion plasma, Physics of Plasma, 11, 4107, 1998.
[13] Saleem H., Haque Q., Vranje J., Nonlinear drift waves in electron-positron-ion plasmas, Phys Rev. E, 67, 057402, 2003.
[14] Haque Q., Vortex structures in dense electron-positron-ion plasmas. Phys. Scr. 80, 055501, 2009.
[15] Tajima T., Taniuti T., Nonlinear interaction of photons and phonons in electron-positron plasmas, Phys. Rev. A, 42, 3587-3602,1990.
[16] Chen F.F., Resistive Overstabilities and Anomalous "Diffusion", Phys. Fluids, 8, 912, 1965.
[17] Andreev P.A., Spin-electron acoustic waves: The Landau damping and ion contribution in the spectrum, Phys. Plasmas, 23, 062103, 2016.
[18] Andreev P.A., Polyakov P.A., Kuz’menkov L.S., on a mechanism of high-temperature superconductivity: Spin-electron acoustic wave as a mechanism for the cooper pair formation, Phys. Plasmas, 24, 102103, 2017.
[19] Andreev P.A., Extraordinary SEAWs under influence of the spin-spin interaction and the quantum Bohm potential, Phys. Plasmas, 25, 062114, 2018.
[20] Moradi A., Energy behavior of extraordinary waves in magnetized quantum plasmas, Phys. Plasmas, 25, 052123, 2018.
[21] Jan Q., Mushtaq A., Ikram M., Non-linear Alfv n waves in spin-1/2 quantum plasma, Phys. Plasmas, 25, 022903, 2018.
[22] Jung Y.D., Quantum-mechanical effects on electron-electron scattering in dense high-temperature plasmas, Phys. Plasmas, 8, 3842-3844, 2001.
[23] Opher M., Silval L.O., Dauger D.E., Decyk V.K., Dawson J.M., Nuclear reaction rates and energy in stellar plasmas: The effect of highly damped modes, Phys. Plasmas, 8, 2454-2460, 2001.
[24] Chabrier G., Douchin F., Potekhin A.Y., Dense astrophysical plasmas, J. Phys. Condense Matter, 14, 9133-9139, 2002.
[25] Sentef M., Kampf A.P., Hembacher S., Mannhart J., Focusing quantum state on surfaces: A rout towards the design of ultrasmall electronic devices, Phys. Rev. B, 74, 153407, 2006.
[26] Shukla P.K., A new dust mode in quantum plasmas, Phys. Lett. A, 352, 242-243, 2006.
[27] Kremp D., Bornath Th., Bonitz M., Schlanges M., Quantum kinetic theory of plasmas in strong laser fields, Phys. Rev. E, 60, 4725-4732, 1999.
[28] Andreev P.A., Quantum kinetics of spinning neutral particles: General theory and Spin wave dispersion, Phys. A, 432, 108-126, 2015.
[29] Wang Y., Lu X., Eliasson B., Modulational instability of spin modified quantum magnetosonic waves in Fermi-Dirac-Pauli plasmas, Phys. Plasmas, 20, 112115, 2013.
[30] Chien T.Y., Chang C.L., Lee C. H., Lin J.Y., Wang J., Chen S.Y., Spatially Localized Self-Injection of Electrons in a Self-Modulated Laser-Wakefield Accelerator by Using Laser-Induced Transient Density Ramp, Phys. Rev. Lett ,94, 115003, 2005.
[31] Close D.H., Giuliano C.R., Hellwarth R.W., Hess L.D., McClung F.J., Wagner W.G., The self-focusing of the light of different polarizations, IEEE J Quantum Electron, 2, 553–557, 1966.
[32] Esarey E., Sprangle P., Krall J., Ting A., Overview of plasma-based accelerator concepts. IEEE Trans Plasma, Sci PS-24, 252–288, 1996.
[33] Landau L., Lifshitz E., Electrodynamics of Continuous Media, 2nd Ed. (Pergamon, Oxford, (1984) Vol. 8 of Course of theoretical physics, pp. 62 and 260.
[34] Washimi H., Karpman V., Ponderomotive force of a high-frequency electromagnetic field in a dispersive medium, Sov. Phys. JETP 44, 528, 1976.
[35] Pitaevskii L., Electric forces in a transparent dispersive medium, Sov. Phys. JETP, 12, 1008, 1961.
[36] Barash Y., Karpman V., Ponderomotive force of a high-frequency field in media with temporal and spatial dispersion, Sov. Phys. JETP, 58, 1139, 1984.
[37] Vladimirov S., On electric forces in a time-dependent medium, Phys. Lett. A, 219, 233-237, 1996.
[38] Klima R., Petrzilka V., On radiation pressure forces in cold magnetised plasma, J. Phys. A, 11, 1687-1695, 1978.
[39] Akama H., Nambu M., Ponderomotive forces for a Vlasov plasma, Phys. Lett. A, 84, 68-70, 1981.
[40] Lee N., Parks G., Ponderomotive force in a warm two-fluid plasma, Phys. Fluids, 26, 724, 1983.
[41] Ghildyal V., Kalra G., Ponderomotive force in an anisotropic temperature plasma, Phys. Plasmas, 5, 390-394, 1998.
[42] Lee N., Parks G., Ponderomotive force in a nonisothermal plasma, Phys. Fluids, 31, 90-94, 1988.
[43] D’Ippolito D., Myra J., Quasilinear theory of the ponderomotive force: Induced stability and transport in axisymmetric mirrors, Phys. Fluids, 28, 1895, 1985.
[44] Kentwell G., Jones D., The time-dependent ponderomotive force, Phys. Rep, 145, 319-403, 1987.
[45] Lehner T., Intense magnetic field generation by relativistic ponderomotive force in an underdense plasma, Phys. Scr, 49, 704-711, 1994.
[46] Mora P., Antenson T.M., Kinetic modeling of intense, short laser pulses propagating in tenuous plasmas, Jr. Phys. Plasma, 4, 217-229, 1997.
[47] Naghashima K., Kishimoto Y., Takuma H., propagation of a relativistic ultrashort laser pulse in a near-critical-density plasma layer, Phys. Rev. E, 58, 4937-4940, 1998.
[48] Andreev A.A., Limpouch J, Ion acceleration in short-pulse laser–target interactions, J. Plasma Phys, 62, 179, 1999.
[49] Khachatryan A.G., Trapping, compression, and acceleration of an electron bunch in the nonlinear laser wakefield, Phys. Rev. E, 65, 046504, 2002.
[50] Tajima T., Dawson J.M., Laser electron accelerator, Phys. Phys. Rev. Lett., 43, 267–270, 1979.
[51] Singh R., Sharma A., Tripathi V.K., Ponderomotive acceleration of electron by a self-focused laser pulse, Phys. Plasmas, 17, 123109, 2010.
[52] Sazergari V., Muizale M., Shokui B., Ponderomotive acceleration of electrons in the interaction of arbitrarily-polarized laser pulse with a tenuous plasma, Phys. Plasmas, 13, 033102, 2006.
[53] Mora P., Antonsen T.M., Kinetic modeling of intense short laser pulses propagating in tendeous plasmas, Physics of Plasmas 4, 217–229, 1997.
[54] Liu C.S., Tripathi V.K., Ponderomotive effect on electron acceleration by plasma wave and betatron resonance and short pulse laser, Phys. Plasmas, 12, 043103, 2005.
[55] Shokari B., Khorashady S.M., Pramana M., Oblique modulation of electron-acoustic waves in a Fermi electron–ion plasma, Phys. Plasmas, 61, 1, 2003.
[56] Shukla P.K., Dispersive electromagnetic drift modes in non-uniform quantum magneto plasmas, Phys. Plasmas, 13, 082101, 2006.
[57] Ali S., Dispersion properties of compressional electromagnetic waves in quantum dusty magnetoplasmas, Phys. Plasmas, 13, 052113, 2006.
[58] Liu H., He X.T., Chen S.G., Resonance acceleration of electrons in combined strong magnetic fields and intense laser fields, Phys. Rev. E, 69, 066409, 2004.
[59] Shukla P.K., Shukla Nitin, Stenflo L., Generation of magnetic fields by the ponderomotive force of electromagnetic waves in dense plasmas, J. Plasma Physics, 76, 25-28, 2010.
[60] Shukla Nitin, Shukla P. K., Eliasson B., and Stenflo L., Magnetization of a quantum plasma by photons, Physics Letters A, 374, 1749-1750, 2010.
[61] Shukla P.K., Eliasson B., Formation and Dynamics of Dark Solitons and Vortices in Quantum Electron Plasmas, Phys. Rev. Lett., 96, 245001, 2006.
[62] Goldston R.J., Rutherford P.H., Introduction to plasma physics (IoP 1995), p. 365.
[63] Moslem W.M., Ali S., Shukla P.K., Eliason B.,Three dimensional electrostatic waves in a nonuniform quantum electron-positron magnetoplasma, Physics Letters A, 372, 3471-3475, 2008.
[64] Eliezer Shalom,The Interaction of High Power Lasers with Plasmas, IoP Publishing, Bristol and Philadelphia,69-73, 2002.
[65] Djebli Mourad, Dense Electron-Positron Pair Plasma Expansion, Z. Naturforsch,70, 875-880, 2015.
[66] shi Yuan, Qin Hong, and Fisch Nathaniel J., Laser-plasma interaction in magnetized environment, Physics of Plasmas, 25, 055706, 2018.
[67] Abdikian A., and Mahmood S., Acoustic solitons in a magnetized quantum electron-positron-ion plasma with relativistic degenerate electrons and positrons pressure, Physics of Plasmas, 23, 122303, 2016.
[68] El-Taibani W.F., Moslem W.M., Wadati Miki, Shukla P.K., On the instability of electrostatic waves in a nonuniform electron-positron magnetoplasma, Physics Letters A, 372, 4067-4075, 2008.
[69] Zheng Peng, Ridgers C.P., and Thomas A.G. R., The effect of nonlinear quantum electrodynamics on relativistic transparency and laser absoption in ultrarelativistic plasma, NewJ. Phys., 17, 043051, 2015.