[1] Paul I., Chatterjee A., and Paul S., "Effects of nonthermal electrons and ion beams on ion-acoustic double layers in warm ion plasma", Indian Journal of Physics, 95, 2491-2505, 2021. https://doi.org/10.1007/s12648-020-01899-w.
[2] Kurz T. et al., "Demonstration of a compact plasma accelerator powered by laser-accelerated electron beams", Nature communications, 12, 2895, 2021. https://doi.org/10.1038/s41467-021-23000-7.
[3] Buldt J., Mueller M., Stark H., Jauregui C., and Limpert J., "Fiber laser-driven gas plasma-based generation of THz radiation with 50-mW average power", Applied Physics B, 126,1-5, 2020. https://doi.org/10.1007/s00340-019-7353-2.
[4] Venkatesh M., Thirupugalmani K., Rao K. S., Brahadeeswaran S., and Chaudhary A., "Generation of efficient THz radiation by optical rectification in DAST crystal using tunable femtosecond laser pulses", Indian Journal of Physics, 91, 319-326, 2017. https://doi.org/10.1007/s12648-016-0927-5.
[5] Hora H., "Theory of relativistic self-focusing of laser radiation in plasmas", JOSA, 65, 882-886, 1975.
[6] Aggarwal M., Kumar H., Richa R., and Gill T. S., "Self-focusing of Gaussian laser beam in weakly relativistic and ponderomotive cold quantum plasma", Physics of Plasmas, 24, 2017. https://doi.org/10.1063/1.4973615.
[7] Aggarwal M., Vij S., and Kant N., "Self-focusing of quadruple Gaussian laser beam in an inhomogenous magnetized plasma with ponderomotive non-linearity: effect of linear absorption", Communications in Theoretical Physics, 64, 565, 2015. https://doi.org /10.1088/0253-6102/64/5/565.
[8] Patil S. D., Takale M. V., and Gill T. S., "Effect of light absorption on relativistic self-focusing of Gaussian laser beam in plasma", The European Physical Journal D, 69, 1-4, 2015. https://doi.org/10.1140/epjd/e2015-60118-4.
[9] Klimontovich Y. L. and Silin V. P., "The spectra of systems of interacting particles and collective energy losses during passage of charged particles through matter", Soviet Physics Uspekhi, 3, 84, 1960. https://doi.org/ 10.1070/PU1960v003n01ABEH003260.
[10] Bohm D. and Pines D., "A collective description of electron interactions: III. Coulomb interactions in a degenerate electron gas", Physical Review, 92, 609, 1953. https://doi.org/10.1103/PhysRev.92.609.
[11] Patil S. and Takale M., "Stationary self-focusing of Gaussian laser beam in relativistic thermal quantum plasma", Physics of Plasmas, 20, 2013. https://doi.org/10.1063/1.4812632.
[12] Shukla P. and Eliasson B., "Formation and dynamics of dark solitons and vortices in quantum electron plasmas", Physical review letters, 96, 245001, 2006. https://doi.org/10.1103/PhysRevLett.96.245001.
[13] Anderson D., Hall B., Lisak M., and Marklund M., "Statistical effects in the multistream model for quantum plasmas", Physical Review E, 65, 046417, 2002. https://doi.org/10.1103/PhysRevE.65.046417.
[14] Shukla P. K., "A new spin on quantum plasmas", Nature Physics, 5, 92-93, 2009. https://doi.org/10.1038/nphys1194.
[15] Manfredi G. and Haas F., "Self-consistent fluid model for a quantum electron gas", Physical Review B, 64, 075316, 2001. https://doi.org/10.1103/PhysRevB.64.075316.
[16] Haas F., Garcia L., Goedert J., and Manfredi G., "Quantum ion-acoustic waves, Physics of Plasmas", 10, 3858-3866, 2003. https://doi.org/10.1063/1.1609446.
[19] Pawar V., Nikam P., Kokare S., Patil S., and Takale M., "Relativistic self-focusing of finite Airy-Gaussian laser beams in cold quantum plasma", Journal of Optics, 50, 403-409, 2021. https://doi.org/10.1007/s12596-021-00718-7.
[20] Thakur V., Chakravarti S. K., Kushwaha J. P., and Kant N., "Strong self-focusing of a chirped pulse laser in thermal quantum plasma under density transition",
Optik, 202, 163727, 2020.
https://doi.org/10.1016/j.ijleo.2019.163727.
[22] Walia K. and Singh A., "Comparison of two theories for the relativistic self-focusing of laser beams in plasma",
Contributions to Plasma Physics, 51, 375-381, 2011.
https://doi.org/10.1002/ctpp.201010102.