مقالۀ پژوهشی: بررسی اثر نیمه رساناهای مختلف بر عملکرد باتری رادیوایزوتوپی

نوع مقاله : مقاله پژوهشی

نویسنده

استادیار، گروه فیزیک دانشکده علوم پایه، دانشگاه صنعتی سهند، تبریز، ایران

چکیده

هدف از این پژوهش بررسی نظری عملکرد باتری بتاولتائیک با چشمه رادیوایزوتوپی C14 و نیمه‌رساناهای مختلف بر پایه اتصال p-n است. برای این منظور ابتدا ضخامت اشباع چشمه C14 و توزیع انرژی ذخیره شده ناشی از ذرات بتای گسیل شده در نیمه­رساناهای مختلف شاملGaAs ، GaN ،SiC و الماس با استفاده از کد مونت کارلوی MCNPX شبیه­سازی و محاسبه شده است. با توجه به نتایج بدست آمده، ضخامت بهینه چشمه C14، 30 میکرومتر تعیین گردید. سپس با به کارگیری روابط تحلیلی و الگوی عددی، ارتباط بین چگالی ناخالصی­های اضافه شده به نیمه­رساناها و پارامترهای عملکرد باتری هسته­ای بتاولتائیک از جمله چگالی جریان مدار کوتاه، ولتاژ مدار باز و چگالی توان خروجی باتری ارزیابی شده است. نتایج نشان دادند که در بهترین حالت، با قرار دادن الماس به عنوان نیمه­رسانا در چیدمان باتری و با وارد کردن ناخالصی با چگالی  و  توان خروجی باتری به میزان  68/9 افزایش می‌یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Research Paper: Evaluation of Different Semiconductors Effect on Radio-Isotopic Battery Performance

نویسنده [English]

  • Najmeh Mohammadi
Assistant Professor, Physics Department, Faculty of Science, Sahand University of Technology, Tabriz, Iran
چکیده [English]

This work aimed to theoretically investigate the operation of the beta voltaic battery with the 14C radio isotopic source and several semiconductors in the p-n junction structure. For this purpose, the saturated thickness of the 14C beta source and energy deposition distribution of beta particles emitted from this source is simulated and calculated in the various semiconductors including the GaAs, GaN, SiC, and diamond using the Monte Carlo code of MCNPX. Regarding the results obtained, the optimized 14C thickness was achieved by 30 micrometers. Then, applying the analytical and numerical model, the relationships between the doping concentration, short circuit current density, open circuit voltage, and output power density were evaluated. The results showed that with   and    with the diamond as semiconductor, the output power density of designed battery was increased to 9.68 among the other considered semiconductors.

کلیدواژه‌ها [English]

  • Beta-voltaic Battery
  • Semiconductor
  • 14C Source
  • p-n Junction
[1] Prelas Mark A, Weaver Charles L, Watermann L Matthew, Lukosi Eric D, Schott Robert J, Wisniewski Denis A,” A review of nuclear batteries”, Progress in Nuclear Energy 75, 117 -148, 2014. https:// doi.org/10.1016/j.pnucene.2014.04.007.
[2] Krasnov A A, Starkov V V, Legotin S A, Rabinovich O I, Didenko S I, Murashev V N, Cheverikin V V, Yakimov E B, Fedulova N A, Rogozev B I, Laryushkin A S, “Improvement of Si-betavoltaic batteries technology”, Advanced Materials Research 1070, 585-588, 2015. https:// doi.org/10.4028/www.scientific.net/AMR.1070-1072.585.
[3] Da-Yong Q, Wei-Zheng Y, Peng G, Xian-Wang Y, Bo Z, Lin Z , Hui G , Hong-Jian Z, “Demonstration of a 4H SiC Betavoltaic Nuclear Battery Based on Schottky Barrier Diode”, Chinese Physics Letters 25, 3799-3800, 2008. https:// doi.org/ 10.1088/0256-307X/25/10/076.
[4] Xi S, Li H, Li L, Wu K, Huang G, Wang Z, Zhang Y, Zhou C, “Research on the Performance of Nuclear Battery with SiC-Schottky and GaN-PIN Structure”, Nuclear Technology 208, 1-13, 2021. https://doi.org/ 10.1080/00295450.2021.1982361.
[5] Jahangiri MH, Tavakoli-Anbaran H, “Optimization and Minimization of Dimensions of Direct Charging Nuclear Battery Based on 90 Sr Radioactive Source for Use in MEMS”, Arabian Journal for Science and Engineering 46, 5921-5932, 2021. https:// doi.org/ 10.1007/s13369-020-05068-3.
[6] San H, Yao S, Wang X, Cheng Z, Chen X, “Design and simulation of GaN based Schottky betavoltaic nuclear micro-battery”, Applied Radiation and Isotopes  80,  17-22, 2013. https://doi.org/10.1016/j.apradiso.2013.05.010.
[7] Kovalev IV, Zelenkov PV, Brezitskaya VV, Lelekov AT,Karaseva MV, “On the analysis of semiconductor materials suitable for the development of a radiation-stimulated power supply based on the nickel-63  radio isotope”, Journal of Physics: Conference Series, 2019. IOP Publishing. https://doi.org /10.1088/1742-6596/1399/2/022040.
[8] Chandrashekhar MVS , Christopher I Thomas, Li Hui, Spencer M G, Lal Amit, “Demonstration of a 4H SiC betavoltaic cell”, Applied Physics Letters 88, 033506, 2006. https://doi.org /10.1063/1.2166699.
 [9] Wang Y, Lu J, Zheng R, Li X, Liu Y, Zhang X, Zhang Y, Chen Z, “Theoretical study of a high-efficiency GaP–Si heterojunction betavoltaic cell compared with metal–Si Schottky barrier betavoltaic cell”, AIP Advances 11, 065110, 2021. https://doi.org /10.1063/5.0053917.
[10] Tsvetkova LA, Tsvetkova SL, Pustovalovb AA, Verbetskiib VN, Baranovc NN, Mandrugind AA, “Radionuclides for Betavoltaic Nuclear Batteries: Micro Scale, Energy-Intensive Batteries with Long-Term Service Life”, Radiokhimiya 64, 281–288, 2022. https://doi.org/10.1134/S1066362222030134.
[11] Akimchenko A, Chepurnov V, Dolgopolov M, Gurskaya A, Kuznetsov O, Mashnin A, Radenko V, Radenko A, Surnin O, Zanin G, “Betavoltaic device in por-SiC/Si C-Nuclear Energy Converter”, EPJ Web of Conferences 158, 06004, 2017. https://doi.org/10.1051/epjconf/201715806004.
[12] Kumar Katiyar N, Goel S, “Recent progress and perspective on batteries made from nuclear waste”, Nuclear Science and Techniques 34, 1-8, 2023. https://doi.org/10.1007/s41365-023-01189-0.
[13] Petrovskaya AS, Surov SV, Kadkov AY, Tsyganov AB, “New Thermo-Plasma Technology for Selective 14C Isotope Extraction from Irradiated Reactor Graphite”, AIP Conference Proceedings 2179, 020020, 2019. https://doi.org/10.1063/1.5135493.
[14] Bower KE, Barbanel YA, Shreter YG, Bohnert GW, Polymers, “Phosphors and Voltaics for Radioisotope Microbatteries”, CRC Press, Boca Raton 352, 27, 2002.
[15] Wang H, Tang X B, Liu Y P, Xu Z H, Liu M, Chen D, “Temperature effect on betavoltaic microbatteries based on Si and GaAs under 63Ni and 147Pm irradiation”, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 359, 36–43, 2015. https://doi.org/10.1016/j.nimb.2015.07.046.
[16] Gui G, Zhang K, Blanchard JP, Ma ZQ, “Prediction of 4H-SiC betavoltaic microbattery characteristics based on practical Ni-63 sources”, Applied Radiation and Isotopes 107, 272–7, 2016. https://doi.org/10.1016/j.apradiso.2015.11.001.
[17] Cheng ZJ, San HS, Li YF , Chen XY,  “The design optimization for GaN-based betavoltaic microbattery”, IEEE 5th Int. Conf. on Nano/Micro Engineered and Molecular Systems NEMS , 582–6, 2010. https://doi.org/10.1109/NEMS.2010.5592469.
[18] Cheng ZJ, San HS, Chen XY, Liu B, Feng ZH, “Demonstration of a high open-circuit voltage GaN betavoltaic microbattery”, Chinese Physics Letters 28 ,078401, 2011. https://doi.org/10.1088/0256-307X/28/7/078401.
[19] Lu M, Zhang GG, Fu K, Yu GH, Su D, Hu JF, “Gallium nitride Schottky betavoltaic nuclear batteries”, Energy Convers Manage 52, 1955–8, 2011. https://doi.org/10.1016/j.enconman.2010.10.048.
[20] Liu YM, Lu JB, Li XY, Xu X, He R, Zheng RZ, Wei GD, “Theoretical prediction of diamond betavoltaic batteries performance using 63Ni”, Chinese Physics Letters 35, 072301, 2018. https://doi.org/10.1088/0256-307X/35/7/072301.
[21] Liu YP, Tang XB, Xu ZH, Hong L, Wang H, Liu M, Chen D, “Influences of planar source thickness on betavoltaics with different semiconductors”, Radioanalytical and Nuclear chemistry 304, 517–25, 2015. https://doi.org/10.1007/s10967-014-3879-2.
[22] Prelas MA, Weaver CL, Watermann ML, Lukosi ED, Schott RJ, Wisniewski DA, “A review of nuclear batteries”, Progress in Nuclear Energy 75, 117–48, 2014. https://doi.org/10.1016/j.pnucene.2014.04.007.
[23] Zheng R, Lu J, Li X, Wang Y, Liu Y, Xu X, Chen Z, Zhang X, “Optimization design of GaAs-based betavoltaic batteries with p–n junction and Schottky barrier structures”, Journal of Physics D: Applied Physics 55, 1-11, 2022. https://doi.org/10.1088/1361-6463/ac526a.
[24] Zhang L, Cheng H, Hu X, Xu X, “Model and Optimal Design of 147Pm SiC-based Betavoltaic Cell”, Superlattices and Microstructures 123, 60-70, 2018. https://doi.org/10.1016/ j. spmi.2018.01.007.
[25] Pelowitz DB, MCNPXTM user’s manual. version 2.6.0. Los Alamos National Laboratory Report LA-CP-07-1473. 2008.
[26] Hao L, Yebing L, Rui H, Yuqing Y, Guanquan W, Zhengkun Z, Shunzhong L, “Simulations about self-absorption of tritium in titanium tritide and the energy deposition in a silicon Schottky barrier diode”, Applied Radiation and Isotopes 70, 2559-2563, 2012. https://doi.org/ 10.1016/j.apradiso.2012.07.012.
[29] Bougrov V, Levinshtein ME, Rumyantsev SL, Zubrilov A, “Properties of Advanced Semiconductor Materials GaN, AlN, InN, BN, SiC, SiGe”, Eds. Levinshtein ME, Rumyantsev SL, Shur MS, John Wiley & Sons, Inc., New York, 1-30, 2001.
[30] Scajev P, Jarasiunas K, Okur S, Ozgur U Morkoc H, “Carrier dynamics in bulk GaN”, Journal of Applied Physics 111, 023702, 2012. https://doi.org/10.1063/1.3673851.
[31] Bouzid F, Saeed MA, Carotenuto R, Pezzimenti F, “Design considerations on 4H‑SiC‑based p–n junction betavoltaic cells”, Applied Physics A 128, 2022. https://doi.org/10.1007/s00339-022-05374-7.
[32] Harris GL, “Properties of SiC EMIS Data reviews Series, no. 13”, INSPEC, IEE, UK, 1995.
[33] Patrick L, Choyke WJ, “Static Dielectric Constant of SiC”, Physics Review B 2, 2255-2256, 1970. https://doi.org/10.1103/PhysRevB.2.2255.
[34] Gulbinas K, Grivickas V, Mahabadi HP, Usman M, Hallen A, “Surface Recombination Investigation in Thin 4H-SiC Layers”, Materials Science 17, 119-124, 2011. https://doi.org/10.5755/j01.ms.17.2.479.
[35] Kittel C, “Introduction to Solid State Physics”, 8th Edition, Wiley, 2004.
 [36] Lawrence S, Don R K, “Diamond: Electronic Properties and Applications”, Springer New York, NY, 1995.
[37] Spear KE, Dismukes JP, “Synthetic Diamond: Emerging CVD Science and Technology”, John Wiley & Sons, 1994.
[38] Grivickas P, Scajev P, Kazuchits N, Mazanik A, Korolik O, Voss LF, Conway AM, Hall DL, Bora M, Subacius L, Bikbajevas V, Grivickas V, “Carrier recombination parameters in diamond after surface boron implantation and annealing”, Applied Physics 127, 245707, 2020. https://doi.org/10.1063/5.0004881.