مقالۀ پژوهشی: محاسبه ویژگی های اپتیکی و الکترونی نانولایه ZnX(X=S, Se) با استفاده از نظریه تابعی چگالی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموختۀ کارشناسی ارشد، گروه فیزیک، دانشکده علوم، دانشگاه هرمزگان، بندرعباس، ایران

2 استادیار، گروه فیزیک، دانشکده علوم، دانشگاه هرمزگان، بندرعباس، ایران.

چکیده

در این پژوهش ویژگی‌های اپتیکی و الکترونی انبوهه و نانولایه سلنیدروی (ZnSe) و سولفید روی (ZnS) مورد بررسی قرار گرفته است. محاسبات بر اساس حل معادله شرودینگر بس الکترونی در چارچوب نظریه تابعی چگالی و با استفاده از کد محاسباتی (WIEN2K)  انجام شده است. انرژی تبادلی- همبستگی با استفاده از رهیافت­های تقریب شیب تعمیم­یافته و انگل- وسکو بدست آمده است. به منظور بررسی ویژگی­های الکترونی و اپتیکی نانولایه­های سلنیدروی و سولفیدروی، ساختارنواری و تابع دی‌الکتریک حقیقی و موهومی انبوهه و نانولایه این ترکیبات با ضخامت­های مختلف محاسبه و با یکدیگر مقایسه شده است. نتایج محاسبات ساختار الکترونی  بدست آمده نشان می‌دهد که شکاف‌نواری نانولایه­های سلنیدروی و سولفیدروی به صفر کاهش یافته است و این ترکیبات که در حالت انبوهه نیمه­رسانا هستند در حالت نانولایه­رسانا می­باشند. همچنین، نتایج محاسبات قسمت حقیقی تابع دی­‌الکتریک نشان می­دهد که ضریب دی­الکتریک استاتیک در راستای موازی سطح نانولایه و عمود بر سطح نانولایه برای هر دو ترکیب سولفیدروی و سلنیدروی با مقدار ثابت دی­الکتریک انبوهه ترکیبات مورد مطالعه متفاوت است. مقایسه نمودارهای قسمت­ حقیقی نانولایه‌­های سولفید روی و سلنید روی با نمودارهای متناظر حالت انبوهه نشان می­دهد که فرآیند جذب موج الکترومغناطیس در نانولایه­‌های سولفید روی و سلنید روی در مقایسه با حالت انبوهه متناظر در انرژی­های پایین­تر رخ می­دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Research Paper: Calculation of the Electronic and Optical Properties of ZnX (X=Se, S) Nano-layer Using Density Functional Theory

نویسندگان [English]

  • Arefeh Esfandiari Nejad 1
  • Najme Nemati poor 1
  • Maryam Noorafshan 2
1 M. Sc. Graduated, Department of Physics, Faculty of Sciences, University of Hormozgan, Bandar-abbas, Iran.
2 Assistant Professor, Department of Physics, Faculty of Sciences, University of Hormozgan, Bandar-abbas, Iran
چکیده [English]

In this study, the optical and electronic properties of bulk and nano-layer of zinc selenide (ZnSe) and zinc sulfide (ZnS) are investigated. The calculations for solving the many-body Schrodinger equations are performed in the framework of density functional theory using the WIEN2K computational package. The Engel-Vosko and gradient generalized approximation (GGA) treat the exchange-correlation potential. To investigate the electronic and optical properties of zinc selenide and zinc sulfide nano layers, the electronic band structure and the real and imaginary parts of complex dielectric function for the bulk and nano-layer with different thicknesses are calculated and compared. The results of electronic band structures show that the energy band gap of zinc selenide and zinc sulfide nano-layers with various thicknesses decreases to zero and are metal. In contrast, the bulk of zinc selenide and zinc sulfide compounds are semiconductors. The results also show that for each compounds the static dielectric function for the perpendicular and parallel direction to the nano-layer surface is different from the bulk static dielectric function. Comparison between the real parts of complex dielectric function for the bulk and nano-layer shows that absorption of electromagnetic radiation for the ZnSe and ZnS nano-layer in comparison to corresponding bulk results occur in lower energies.  

کلیدواژه‌ها [English]

  • Density Functional Theory
  • Electronic Properties
  • Optical Properties
  • ZnSe Nano-layer
  • ZnS Nano-layer
[1] Gutowski, J., P. Michler, H. I. Rückmann, H. G. Breunig, M. Röwe, K. Sebald, and T. Voss. "Excitons in Wide‐Gap Semiconductors: Coherence, Dynamics, and Lasing", physica status solidi (b), 234(1), 70-83, 2002. https://doi.org/10.1002/1521-3951(200211)234:1<70::AID-PSSB70>3.0.CO;2-N.
[2] Huang M.Z., Ching W.Y., "Calculation of optical excitations in cubic semiconductors", Physical Review, 47(15) ,9449, 1993. https://doi.org/10.1103/PhysRevB.47.9449.
[3] Ando K., Ishikura H., Fukunaga Y., Kubota T., Maeta H., Abe T. and Kasada H., “Highly Efficient Blue-Ultraviolet Photodetectors Based on II-VI Wide-Bandgap Compound Semiconductors", Phys. Stat. Sol., B 229, 1065-1071, 2002. https://doi.org/10.1002/1521-3951(200201)229:2<1065::AID-PSSB1065>3.0.CO;2-U.
[4] Ma C., Moore D., Ding Y., Li J. and Wang Z.L., "Nanobelt and nanosaw structures of II-VI semiconductors", Int. J. Nanotechnology 1, 431-451, 2004. https://doi.org/10.1504/IJNT.2004.005978.
[5] Gordillo G., "New material used as optical window in thin film solar cells", Surface Review and Letters 9 (05n06), 1675-1680, 2002. https://doi.org/10.1142/S0218625X02004207.
[6] Willistein D.A., "An Introduction to Optical Window Design", Introductory Opto-Mechanical Engineering 1, 1-8, 2006.
[7] Prevenslik TV., "Acoustoluminescence and sonoluminescence", Journal of Luminescence, 87, 1210-1212, 2000. https://doi.org/10.1016/S0022-2313(99)00513-X.
[8] Xu CN., Watanabe T., Akiyama M., Zheng XG., "Preparation and characteristics of highly triboluminescent ZnS film", Materials research bulletin, 34(10-11), 1491-1500, 1999. https://doi.org/10.1016/S0025-5408(99)00175-0.
[9] Tang W., Cameron DC., "Electroluminescent zinc sulphide devices produced by sol-gel processing", Thin Solid Films, 280(1-2), 221-6, 1996. https://doi.org/10.1016/0040-6090(95)08198-4.
[10] Chen W., Wang Z., Lin Z., Lin L., "Thermoluminescence of ZnS nanoparticles", Applied physics letters, 70(11), 1465-7, 1997. https://doi.org/10.1063/1.118563.
[11] Poole Ch.P., Owens F.J., "Introduction to Nanotechnology", John Wiley, 145-150, 2003.
[12] Goudarzi, A., Namghi, A. D., & Ha, C. S., "Fabrication and characterization of nano-structured ZnS thin films as the buffer layers in solar cells", RSC advances, 4(104), 59764-59771, 2014. https://doi.org/10.1039/C4RA12148A.
[13] Meng, F., Xu, B., Long, T., Cheng, S., Li, Y., Zhang, Y., & Liu, J., "ZnS nanolayer coated hollow carbon spheres with enhanced rate and cycling performance for Li-S batteries", Science China Technological Sciences, 65(2), 272-281, 2022. https://doi.org/10.1007/s11431-021-1925-2.
[14] Zhang, Q., Li, H., Ma, Y., & Zhai, T., "ZnSe nanostructures: synthesis, properties and applications", Progress in Materials Science, 83, 472-535, 2016. https://doi.org/10.1016/j.pmatsci.2016.07.005.
[15] Hohenberg P., Kohn W., "Density functional theory (DFT) ", Physical Review, 136, B865-B871, 1964.
[16] Blaha P., Schwarz K., Sorantin P., Trikey S.B., "full potential, linearized augmented plane wave programs for crystalline systems", Computer Physics communications, 59, 399-415, 1990. https://doi.org/10.1016/0010-4655(90)90187-6.
[17] Kohn W., Sham L., "Self-Consistent Equations Including Exchange and Correlation Effects", Physical Review, 140, A1133-A1138, 1965.
[18] Slater J.C., "Wave functions in a periodic potential", Physical Review, 51, 846–851, 1937. https://doi.org/10.1103/PhysRev.51.846.
[19] Slater J.C., "Suggestions from Solid‐State Theory Regarding Molecular Calculations", The Journal of Chemical Physics, 43(10), S228, 1965. https://doi.org/10.1063/1.1701494.
[20] Perdew J. P., Burke K., and Ernzerhof M., "Generalized gradient approximation made simple", Physical review letters, 77(18), 3865-3868, 1996. https://doi.org/10.1103/PhysRevLett.77.3865.
[21] E. Engel, S. H. Vosko., "Fourth-order gradient corrections to the exchange-only energy functional: Importance of∇ 2 n contributions", Physical Review B, 50, 10498, 1994. https://doi.org/10.1103/PhysRevB.50.10498.
[22] Tran F., Blaha P., "Accurate Band Gaps of Semiconductors and Insulators with a Semilocal Exchange-Correlation Potential", Physical Review Letter 102, 226401, 2009. https://doi.org/10.1103/PhysRevLett.102.226401.
[23] Trindade, T., O'Brien, P., & Pickett, N. L. "Nanocrystalline semiconductors: synthesis, properties, and perspectives", Chemistry of Materials, 13(11), 3843-3858, 2001. https://doi.org/10.1021/cm000843p.
[24] Murnaghan F., "The Compressibility of Media under Extreme Pressures", Proceedings of the National Academy of Sciences, 30(9), 244-247, 1994. https://doi.org/10.1073%2Fpnas.30.9.244.
[25] Nourbakhsh Z., "Structural, electronic and optical properties of ZnX and CdX compounds (X= Se, Te and S) under hydrostatic pressure", Journal of Alloys and Compounds, 505(2), 698-711, 2010. http://dx.doi.org/10.1016/j.jallcom.2010.06.120.
[26] Smith N.V., "Photoelectron Energy Spectra and the Band Structures of the Noble Metals", Physical Review B, 3, 1862-1878, 1971. https://doi.org/10.1103/PhysRevB.3.1862.
[27] Ambrosch-Draxl C., Sofo J., "Linear optical properties of solids within the full-potential linearized augmented planewave method", Computer Physics Communications, 175, 1-14, 2006. https://doi.org/10.1016/j.cpc.2006.03.005.
[28] Ravindran P., Delin A., Ahuja R., Johansson B., Auluck S., Wills J. et al., "Optical properties of monoclinic Sn from relativistic first-principles theory", Physical Review B, 56, 6851-6861, 1997. https://doi.org/10.1103/PhysRevB.56.6851.
[29] Wooten F., "Optical Properties of Solids, Academic Press", New York and London, 28(9), 803-804, 1973. https://doi.org/10.11316/butsuri1946.28.9.803.
[30] Aven M., Marple D. T. F. and B. Segall., "Some electrical and optical properties of ZnSe", Journal of Applied Physics 32(10), 2261-2265, 1961. https://doi.org/10.1063/1.1777056.