مقالۀ پژوهشی: بررسی ویژگی‌های ترموالکتریکی دینامیکی، الکترونی و اپتیکی تک لایه C3N با استفاده محاسبات اصول اولیه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترا، گروه فیزیک، واحد کرمانشاه، دانشگاه آزاد اسلامی، کرمانشاه، ایران

2 استادیار، گروه فیزیک، واحد کرمانشاه، دانشگاه آزاد اسلامی، کرمانشاه، ایران

چکیده

در این مقاله با استفاده ازمحاسبات اصول اولیه در چارچوب نظریه­ی تابعی چگالی بررسی ویژگی­های ترموالکتریکی، فونونی، الکترونی و اپتیکی تک لایه C3N توسط کد محاسباتی Wien2K  پرداخته شده است. مطالعه­ی ویژگی­های الکترونی رفتار نیمه­رسانایی غیر مغناطیسی با شکاف غیرمستقیم با مقدار 5/0الکترون ولت را برای این ساختار دوبعدی نشان می‌دهد. همچنین، ویژگی­های نوری از جمله تابع دی‌الکتریک، بازتاب، تابع اتلاف انرژی، ضریب جذب و هدایت نوری محاسبه می‌شوند. ویژگی­های اپتیکی نیز نشان دهنده­ی ناهمسانگردی اپتیکی تک لایه C3N برای دو راستای x وz است، که با توجه به نمودار ضریب شکست منجر به ایجاد ویژگی­ دوشکستگی در این ساختارمی‌شود، که یک پارامتر کلیدی برای عملکرد نوری خطی این ترکیب است. نتایج یک درک اساسی از طراحی ساختارهای کامپوزیتی مورد استفاده در دستگاه‌های نانو بر اساس مواد پیشرفته دو بعدی ارائه می‌دهد. دیاگرام پاشندگی فونونی با استفاده از رهیافت پاسخ خطی در امتداد نقاط پرتقارن محاسبه می‌گردد. نتایج نشان دهنده نبود مدهای منفی در طیف فونونی است که بیان می‌کند ساختار به صورت دینامیکی در تعادل قرار دارد. بررسی ویژگی­های ترموالکتریکی تک لایه C3N با استفاده نظریه نیمه­کلاسیکی بولتزمن نشان می­دهد که این تک لایه در دمای اتاق و دماهای پایین­تر از دمای اتاق دارای ضریب ارزشی (ZT) نزدیک به یک است. در نتیجه می­تواند به عنوان گزینه­‌ای برای کاربردهای ترموالکتریکی مطرح گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Research Paper: Investigation of Thermoelectric, Dynamical, Electron and Optical Properties of C3N Monolayer Using First Principles Calculations

نویسندگان [English]

  • Erfan Cholaki 1
  • Borhan Arghavani nia 2
  • Mohammad Hossein Sahafi 1
1 Ph. D. Student, Department of Physics, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
2 Assistant Professor, Department of Physics, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
چکیده [English]

In this paper, the thermo-electric, phonon, electronic, and optical properties of the C3N monolayer have been investigated using the Wien2K computational code based on first principles calculations in the framework of the density functional theory. The study of electronic properties shows the behavior of non-magnetic semiconductors with an indirect gap with a value of 0.5 electron volts for this two-dimensional structure. Also, optical properties such as dielectric function, reflection, energy loss function, absorption coefficient, and optical conductivity are calculated. C3N monolayer is optically anisotropic in z and x direction, which according to the refractive index diagram leads to birefringence, which is a key parameter for this compound's linear optical performance. The results provide a fundamental understanding of the design of composite structures used in nanodevices based on two-dimensional advanced materials. The linear response approach along the symmetric points calculates the phonon dispersion diagram. The results indicate the absence of negative modes in the phonon spectrum, indicating that the structure is dynamically stable. Investigating the thermoelectric properties of the C3N monolayer using the semi-classical Boltzmann theory shows that this monolayer has a value coefficient (ZT) close to one at room temperature and temperatures lower than room temperature. As a result, it can be proposed as a candidate for thermoelectric applications.

کلیدواژه‌ها [English]

  • Density Functional Theory
  • Optical Properties
  • The C3N Monolayer
  • Semiconductor
[1] Wu P., Du P., Zhang H., and Cai C., " Graphyne-supported single Fe atom catalysts for CO oxidation", Physical Chemistry Chemical Physics, 17(2), 1441–1449, 2014, https://doi.org/10.1039/C4CP04181J
[2]. Machado B.F and Serp P., " Graphene-based materials for catalysis", Catal. Sci. Technol, 2, 54–75, 2012, https://doi.org/ 10.1039/C1CY00361E
[3] Castro Neto A.H., Guinea,F. Peres N.M.R., Novoselov K.S., and Geim A.K., " Theelectronic properties of graphene", Rev. Mod. Phys, 81(1), 109–162, 2009, https://doi.org /10.1103/RevModPhys.81.109
[4] Adamska L., and Sharifzadeh S., " Fine Tuning the Optoelectronic Properties of Freestanding Borophene by Strain", ACS Omega, 2, 8290-8299, 2017, https://doi.org /10.1021/acsomega.7b01232
[5] Yang S.W., Li W., Ye C.C., Wang G., Tian H., Zhu C., He P., Ding G.Q., Xie X.M, Liu Y., Lifshitz Y., Lee S., Kang Z., and Jiang M., "C3N—A 2D crystalline, hole‐free, tunable‐narrow‐bandgap semiconductor with ferromagnetic properties." Advanced Materials, 29, 1605625, 2017, https://doi.org /10.1002/adma.201605625
[6] Makaremi M,.; Mortazavi B,. and Singh C., “Adsorption of Metallic, Metalloidic, and21 Nonmetallic Adatoms on Two-Dimensional C3N”, J. Phys. Chem. C, 121(34), 18575-185832017,  https://doi.org//10.1021/acs.jpcc.7b04511
[7] Rao X., Si Q., Shi T., Han X., and Ma, S., “Fe-doped C3N monolayer as a promising SAC for CO oxidation with low temperature and high reactivity”, Computational and Theoretical Chemistry, 1194, 113080, 2021,  https://doi.org//10.1016/j.comptc.2020.113080
[8] Bagheri M., “Electrical and mechanical properties of a fully hydrogenated two-dimensional polyaniline sheet”, Computational Materials Science, 153, 126-133, 2018,  https://doi.org//10.1016/j.commatsci.2018.06.027
[9] Bagheri M., and Izadi S., “Polyaniline (C3N) nanoribbons: Magnetic metal, Semiconductor, and Half-Metal”, Applied physics 124, 84304, 2018,  https://doi.org//10.1063/1.5042207
[10] Xu J., Mahmood J., Dou Y., Dou S., Li F., Dai L., and Baek, J.B., “2D frameworks of C2N and C3N as new anode materials for lithium‐ion batteries”, Advanced Materials, 29(34), 1702007, 2017,  https://doi.org//10.1002/adma.201702007
[11] He B., Shen J., Ma D., Lu Z., and Yang Z., “Boron-Doped C3N Monolayer as a Promising Metal-Free Oxygen Reduction Reaction Catalyst: A Theoretical Insight”, J. Phys. Chem. C, 122, 20312–20322, 2018,  https://doi.org//10.1021/acs.jpcc.8b05171.
[12] Wu, Q., Wongwiriyapan W., Park J.H., Sangwoo Park, Jung S.J., Jeong T., Lee S., Young H.L.,, and Song Y.J., "In situ chemical vapor deposition of graphene and hexagonal boron nitride heterostructures", Current Applied Physics 16(9), 1175-1191, 2016,  https://doi.org//10.1016/j.cap.2016.04.024
[13] Tedstone A.A., Lewis D.J., Hao R., Mao S.M., Bellon P., Averback R.S., et al., “Mechanical Properties of Molybdenum Disulfide and the Effect of Doping: An inSitu TEM Study”, ACS Appl. Mater. Interfaces, 7, 37, 20829–20834, 2015,  https://doi.org//10.1021/acsami.5b06055
[14] EinalipourEshkalak K., Sadeghzadeh S., and Molaei F., “Interfacial Thermal Resistance Mechanism for the Polyaniline (C3N)–Graphene Heterostructure”, J. Phys. Chem. C, 124, 14316–14326, 2020,  https://doi.org//10.1021/acs.jpcc.0c02051
[15]. Lau V.H, , Mesch M.B., Duppel V., and Blum V., “Low-molecular-weight carbon nitrides for solar hydrogen evolution”, J. Am. Chem. Soc., 37, 1064, 2015,  https://doi.org//10.1021/ja511802c
[16]. Geim A.K. and Grigorieva I.V., “Van der Waals heterostructures”, Nature, 499, 419-425, 2013, https://doi.org/10.1038/nature12385
[17] Kademi Zahedi R., Shirazi A.H.N, Alimouri P., Alajlan N., and Rabczuk T., “Mechanical properties of graphene-like BC3; a moleculardynamics study”, Comput. Mater. Sci, 168, 1–10, 2019, https://doi.org/10.1016/j.commatsci.2019.05.053
[18] Sahafi M.H., “First-principles investigation of phonon spectrum, elastic, mechanical and thermophysical characteristics of an actinide-oxide ceramic”, J. Solid State Chem., 124102, 2023. https://doi.org/10.1016/j.jssc.2023.124102
[19] Cai Z., Liu B., Zou X. and Cheng H.M., “Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures”, Chemical reviews118(13), 6091-6133, 2018,  https://doi.org//10.1021/acs.chemrev.7b00536
[20] Mendoza-Sánchez B., and Gogotsi Y., “Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures”, Chemical reviews118(13), 6091-6133, 2018,  https://doi.org//10.1021/acs.chemrev.7b00536
[21] He B.L., Shen J.S., and Tian Z.X., “Iron-embedded C2N monolayer: a promising low-cost and high-activity single-atom catalyst for CO oxidation”, Phys. Chem. Chem. Phys, 18 (35), 24261, 2016,  https://doi.org//10.1039/C6CP03398A
[22] Mahmood J., Lee E.K., Jung M., Shin D., Jeon I.Y., Jung S.M., Choi H.J., Seo J.M., Bae S.Y., Sohn S.D., Park N., Oh J.H., Shin H.J., and Baek J.B., "Nitrogenated holey two-dimensional structures", Naturecommunications, 6, 6486, 2015, https://doi.org/ 10.1038/ncomms7486
[23] Blaha P., Schwarz K., Madsen G.K.H., Kvasnicka D, Luitz J., Laskowski R., Tran F., and Marks L.D., "wien2k", An augmented plane wave+ local orbitals program for calculating crystal properties,60(1), 2001.
[24] Sahafi M.H., and Mahdavi M., “Ab initio investigations on lattice dynamics and thermal characteristics of ThO2 using Debye–Einstein model”, Bull. Mater. Sci., 44, 1-9, 2021.  https://doi.org//10.1007/s12034-021-02370-0
[25] Diakite Y.I., Traore S.D., Malozovsky Y., Khamala B., Franklin L., and Bagayoko D., “Accurate Electronic, Transport, and Bulk Properties of Gallium Arsenide (GaAs)”, arXiv preprint arXiv:1601.05300, 2016, https://doi.org/10.48550/arXiv.1601.05300
 [26] Agrawal S.,  Kaushal G., , and Srivastava A., “Electron transport in C3N monolayer: DFT analysis of volatile organic compound sensing”, Chemical Physics Letters762, 138121, 2021, https://doi.org/10.1016/j.cplett.2020.138121
[27] Esrafili M.D., and Heydari S.,“Si-doped C3N monolayers as efficient single-atom catalysts for the reduction of N2O: a computational study”, MolecularPhysics, 18, 118, 2020.,https://doi.org/10.1080/00268976.2020.1759830
[28] Molaei F., Eshkalak K.E., Sadeghzadeh S., and Siavoshi H, “Assessing mechanical properties of single-layer B-doped C3N and N-doped BC3 nanosheets and their hybrid”, Computational Materials Science, 192, 110368, 2021, https://doi.org /10.1016/j.commatsci.2021.110368
[29] Bafekry A., Stampfl C., Farjami Shayesteh S., “A First-Principles Study of C3N Nanostructures: Control and Engineering of the Electronic and Magnetic Properties of Nanosheets, Tubes and Ribbons”, Chem. Phys. Chem.21, 164, 2020,  https://doi.org /10.1002/cphc.201900852