[1] Wu P., Du P., Zhang H., and Cai C., " Graphyne-supported single Fe atom catalysts for CO oxidation",
Physical Chemistry Chemical Physics, 17(2), 1441–1449, 2014,
https://doi.org/10.1039/C4CP04181J
[3] Castro Neto A.H., Guinea,F. Peres N.M.R., Novoselov K.S., and Geim A.K., " Theelectronic properties of graphene",
Rev. Mod.
Phys,
81(1), 109–162, 2009,
https://doi.org /10.1103/RevModPhys.81.109
[4] Adamska L., and Sharifzadeh S., " Fine Tuning the Optoelectronic Properties of Freestanding Borophene by Strain",
ACS Omega, 2, 8290-8299, 2017,
https://doi.org /10.1021/acsomega.7b01232
[5] Yang S.W., Li W., Ye C.C., Wang G., Tian H., Zhu C., He P., Ding G.Q., Xie X.M, Liu Y., Lifshitz Y., Lee S., Kang Z., and Jiang M., "C3N—A 2D crystalline, hole‐free, tunable‐narrow‐bandgap semiconductor with ferromagnetic properties." Advanced Materials, 29, 1605625, 2017, https://doi.org /10.1002/adma.201605625
[6] Makaremi M,.; Mortazavi B,. and Singh C., “Adsorption of Metallic, Metalloidic, and21 Nonmetallic Adatoms on Two-Dimensional C3N”,
J. Phys. Chem. C, 121(34), 18575-185832017,
https://doi.org//10.1021/acs.jpcc.7b04511
[7] Rao X., Si Q., Shi T., Han X., and Ma, S., “Fe-doped C3N monolayer as a promising SAC for CO oxidation with low temperature and high reactivity”,
Computational and Theoretical Chemistry, 1194, 113080, 2021,
https://doi.org//10.1016/j.comptc.2020.113080
[9] Bagheri M., and Izadi S., “Polyaniline (C3N) nanoribbons: Magnetic metal, Semiconductor, and Half-Metal”,
Applied physics 124, 84304, 2018,
https://doi.org//10.1063/1.5042207
[10] Xu J., Mahmood J., Dou Y., Dou S., Li F., Dai L., and Baek, J.B., “2D frameworks of C2N and C3N as new anode materials for lithium‐ion batteries”,
Advanced Materials,
29(34), 1702007, 2017,
https://doi.org//10.1002/adma.201702007
[11] He B., Shen J., Ma D., Lu Z., and Yang Z., “Boron-Doped C3N Monolayer as a Promising Metal-Free Oxygen Reduction Reaction Catalyst: A Theoretical Insight”,
J. Phys. Chem. C,
122, 20312–20322, 2018,
https://doi.org//10.1021/acs.jpcc.8b05171.
[12] Wu, Q., Wongwiriyapan W., Park J.H., Sangwoo Park, Jung S.J., Jeong T., Lee S., Young H.L.,, and Song Y.J., "In situ chemical vapor deposition of graphene and hexagonal boron nitride heterostructures",
Current Applied Physics 16(9), 1175-1191, 2016,
https://doi.org//10.1016/j.cap.2016.04.024
[13] Tedstone A.A., Lewis D.J., Hao R., Mao S.M., Bellon P., Averback R.S., et al., “Mechanical Properties of Molybdenum Disulfide and the Effect of Doping: An inSitu TEM Study”,
ACS Appl. Mater. Interfaces,
7, 37, 20829–20834, 2015,
https://doi.org//10.1021/acsami.5b06055
[14] EinalipourEshkalak K., Sadeghzadeh S., and Molaei F., “Interfacial Thermal Resistance Mechanism for the Polyaniline (C3N)–Graphene Heterostructure”,
J. Phys. Chem. C, 124, 14316–14326, 2020,
https://doi.org//10.1021/acs.jpcc.0c02051
[15]. Lau V.H, , Mesch M.B., Duppel V., and Blum V., “Low-molecular-weight carbon nitrides for solar hydrogen evolution”,
J. Am. Chem. Soc., 37, 1064, 2015,
https://doi.org//10.1021/ja511802c
[16]. Geim A.K. and Grigorieva I.V., “Van der Waals heterostructures”, Nature, 499, 419-425, 2013, https://doi.org/10.1038/nature12385
[17] Kademi Zahedi R., Shirazi A.H.N, Alimouri P., Alajlan N., and Rabczuk T., “Mechanical properties of graphene-like BC3; a moleculardynamics study”,
Comput. Mater. Sci,
168, 1–10, 2019,
https://doi.org/10.1016/j.commatsci.2019.05.053
[18] Sahafi M.H., “First-principles investigation of phonon spectrum, elastic, mechanical and thermophysical characteristics of an actinide-oxide ceramic”,
J. Solid State Chem., 124102, 2023.
https://doi.org/10.1016/j.jssc.2023.124102
[19] Cai Z., Liu B., Zou X. and Cheng H.M., “Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures”,
Chemical reviews,
118(13), 6091-6133, 2018,
https://doi.org//10.1021/acs.chemrev.7b00536
[20] Mendoza-Sánchez B., and Gogotsi Y., “Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures”,
Chemical reviews,
118(13), 6091-6133, 2018,
https://doi.org//10.1021/acs.chemrev.7b00536
[21] He B.L., Shen J.S., and Tian Z.X., “Iron-embedded C2N monolayer: a promising low-cost and high-activity single-atom catalyst for CO oxidation”,
Phys. Chem. Chem. Phys, 18 (35), 24261, 2016,
https://doi.org//10.1039/C6CP03398A
[22] Mahmood J., Lee E.K., Jung M., Shin D., Jeon I.Y., Jung S.M., Choi H.J., Seo J.M., Bae S.Y., Sohn S.D., Park N., Oh J.H., Shin H.J., and Baek J.B., "Nitrogenated holey two-dimensional structures", Naturecommunications, 6, 6486, 2015, https://doi.org/ 10.1038/ncomms7486
[23] Blaha P., Schwarz K., Madsen G.K.H., Kvasnicka D, Luitz J., Laskowski R., Tran F., and Marks L.D., "wien2k", An augmented plane wave+ local orbitals program for calculating crystal properties,60(1), 2001.
[24] Sahafi M.H., and Mahdavi M., “Ab initio investigations on lattice dynamics and thermal characteristics of ThO2 using Debye–Einstein model”,
Bull. Mater. Sci.,
44, 1-9, 2021.
https://doi.org//10.1007/s12034-021-02370-0
[25] Diakite Y.I., Traore S.D., Malozovsky Y., Khamala B., Franklin L., and Bagayoko D., “Accurate Electronic, Transport, and Bulk Properties of Gallium Arsenide (GaAs)”,
arXiv preprint arXiv:1601.05300, 2016,
https://doi.org/10.48550/arXiv.1601.05300
[26] Agrawal S., Kaushal G., , and Srivastava A., “Electron transport in C3N monolayer: DFT analysis of volatile organic compound sensing”,
Chemical Physics Letters,
762, 138121, 2021,
https://doi.org/10.1016/j.cplett.2020.138121
[28] Molaei F., Eshkalak K.E., Sadeghzadeh S., and Siavoshi H, “Assessing mechanical properties of single-layer B-doped C3N and N-doped BC3 nanosheets and their hybrid”, Computational Materials Science, 192, 110368, 2021, https://doi.org /10.1016/j.commatsci.2021.110368
[29] Bafekry A., Stampfl C., Farjami Shayesteh S., “A First-Principles Study of C3N Nanostructures: Control and Engineering of the Electronic and Magnetic Properties of Nanosheets, Tubes and Ribbons”,
Chem. Phys. Chem.,
21, 164, 2020,
https://doi.org /10.1002/cphc.201900852