مقالۀ پژوهشی: بازتاب پالس‌های نوری فوق‌کوتاه در ساختارهای دی‌الکتریک چندلایه‌ای و میکرورزوناتورها به روش FDTD

نوع مقاله : مقاله پژوهشی

نویسنده

استادیار، دانشکده مهندسی برق، دانشگاه آزاد اسلامی، واحد ارس، جلفا، ایران

چکیده

بلورهای فوتونی و ساختارهای مبتنی بر آن (ساختارهای فوتونیکی) در دو دهه گذشته مورد مطالعه قرار گرفته و به صورت گسترده­ای در برنامه­های مختلف نوری مورد استفاده قرار گرفته است. در این مقاله، الگوی نظری و عددی برای انتشار امواج الکترومغناطیسی، در ساختارهای دی الکتریک چند لایه‌ای توسعه یافته و انتشار پالس‌های نوری فوق کوتاه در محیط­های چند لایه‌ای و میکرورزوناتورها مورد بررسی قرار گرفته، بازتاب انرژی و ضرایب انتقال بسته به پارامترهای محیط و مدت زمان پالس نوری محاسبه می‌شود. روشی برای محاسبه طیف‌های انتقالی و بازتابی بلور فوتونی تک بعدی بر اساس الگو‌سازی FDTD با انتشار پالس‌های نوری فوق کوتاه پیشنهاد شده است. برای محاسبه طیف انتقال و بازتاب یک بلور فوتونی یک بعدی و شبیه‌سازی انتشار پالس‌های نوری فوق کوتاه، در ساختارهای دی­الکتریک چندلایه‌ای و میکرورزوناتورها بر اساس راه حل عددی معادلات ماکسول با تقریب تفاضل محدود درحوزه مکان زمان انجام شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Research Paper: Reflection of Ultra-Short Light Pulses in Multilayer Dielectric Structures and Micro-resonators by FDTD Method

نویسنده [English]

  • Noushin Dadashzadeh
Assistant Professor, Department of Electrical Engineering, Aras Branch, Islamic Azad University, Jolfa, Iran.
چکیده [English]

In the last two decades, photonic crystals and structures that are based on them (photonic structures) have been examined and have been widely utilized in various optical applications. In this article, a theoretical and numerical model for the propagation of electromagnetic waves in multilayer dielectric structures is developed. The propagation of ultra-short light pulses in multilayer media and microresonators is investigated, and the energy reflection and transmission coefficients depending on the parameters of the environment and duration of the optical pulse are calculated. A method for calculating the transmission and reflection spectra of one-dimensional photonic crystal based on FDTD modeling with the emission of ultra-short optical pulses is proposed. To calculate the transmission and reflection spectrum of a one-dimensional photonic crystal and to simulate the propagation of ultra-short light pulses, in multilayer dielectric structures and microresonators, based on the numerical solution of Maxwell's equations with the finite difference approximation in the space-time domain, is performed.

کلیدواژه‌ها [English]

  • Photonic Crystals
  • Micro Resonators
  • Numerical Simulation
  • Maxwell's Equations
  • FDTD Method
[1] Huang J., Zhang J., Zhu T., and Ruan Z., Spatiotemporal Differentiators Generating Optical Vortices with Transverse Orbital Angular Momentum and Detecting Sharp Change of Pulse Envelope, Laser Photonics Rev. 16(5), 2100357, 2022, https://doi.org/10.1002/lpor.202100357.
[2] Joannopoulos J.D., Johnson S.G., Winn J.N., Meade R.D., Photonic Crystals: Molding the Flow of Light, Princeton University Press, second edition, 57, 2008.
 [3] Dadashzadeh N., Romanov O.G., Finite-Difference Time-Domain Simulation of Light Propagation in 2D Periodic and Quasi-Periodic Photonic Structures, JNS, 3, 359- 363, 2013. https://doi.org/10.7508/jns.2013.03.012.
[4] Karimi A., Zarifkar A., and. Miri M., Subpicosecond Flat-top Pulse Shaping Using a Hybrid Plasmonic Microring-Based Temporal Differentiator, J. Opt. Soc. Am. B, 36(7), 1738–1747,2019https://doi.org/10.1364/JOSAB.36.001738.
[5] Kawano K., Kitoh T. Introduction to Optical Waveguide Analysis: Solving Maxwell’s Equations and the Schrödinger Equation, John Willey and Sons Inc.,238,2001, https://doi.org/10.1002/0471221600 2001.
[6]. Dadashzadeh N., and. Romanov O. G, Finite-Difference Time-Domain Simulation of Light Propagation in Waveguide Arrays, Nonlinear Phenomena in Complex Systems,17(2),169_176,2014http://elib.bsu.by/handle/123456789/116854.
[7] Golovastikov N. V., Doskolovich L.L., Bezus E. A., Bykov D. A., and Soifer V. A., An Optical Differentiator Based on a Three-Layer Structure with a W-Shaped Refractive Index Profile, J. Exp. Theor. Phys., 127(2), 202–209, 2018, https://doi.org/10.1134/S1063776118080174.
[8] Kashapov A. I., Doskolovich L. L., Bezus E. A., Bykov D. A., and Soifer V. A., Spatial Differentiation of Optical Beams Using a Resonant Metal-Dielectric-Metal Structure, J. Opt., 23(2), 023501, 2021, https://doi.org/10.1088/2040-8986/abe63b.
[9] Doskolovich L.L., Kashapov A.I., Bezus E.A., and Bykov D.A., Optical Properties of Cascaded Metal-Dielectric-metal Structures and their Application to the Differentiation of Optical Signals, Photonics Nanostructures Fundam.Appl.,52,101069,2022,https://doi.org/10.1016/j.photonics.2022.101069.
[10] Zhu T., Zhou Y., Lou Y., Ye H., Qiu M., Ruan Z., and Fan S., Plasmonic Computing of Spatial Differentiation, Nat. Commun.8(1),15391,2017, https://doi.org/10.1038/ncomms15391.
[11] Y. Zhou, J. Zhan, R. Chen, W. Chen, Y. Wang, Y. Shao, and Y. Ma, Analogue Optical SpatiotemporalDifferentiator,Adv.Opt.Mater.,9(10),2002088,2021.https://doi.org/10.1002/adom.202002088.
[12] Hummel R.E., Guenther K.H. (Eds.), Handbook of Optical Properties, Thin Films for Optical Coatings, CRC-Press,247 1995.
[13] Zhou Y., Zheng H., Kravchenko I. I., and Valentine J., Flat Optics for Image Differentiation, Nat. Photonics 14(5), 316–323, 2020, https://doi.org/10.1038/s41566-020-0591-3.
[14] Estakhri N. M., Edwards B., and Engheta N., Inverse-Designed Metastructures that Solve Equations, Science, 363(6433),1333_1338,2019, https://doi.org/10.1126/science.aaw2498.
[15] Cheng K., Fan Y., Zhang W., Gong Y., Fei S., and Li H., Optical Realization of Wave-Based Analog Computing with Metamaterials,Appl.Sci.,11(1),141,2020,https://doi.org/10.3390/app11010141.
[16] Perez-Garcıa V.M., Torres P., Garcıa-Ripoll J.J., Michinel H., Moment Analysis of Paraxial Propagation in a Nonlinear Graded Index Fibre, J. Opt. B: Quantum Semiclass.Opt.2000, https://doi.org/10.1088/14644266/2/3/320.
[17] Yee K. S., Numerical Solution of Initial Boundary Value Problems Involving Maxwell's Equations in Isotropic Media,
 IEEE Trans. Antennas Propagat, AP-14., 302–307, 1966, https://doi.org/ 10.1109/TAP.1966.1138693.
[18] Bellanca G., Semprini R., Bassi P., FDTD Modelling of Spatial Soliton Propagation, Opt. and Quant. Electro., 29, 233–241, 1997 https://doi.org/10.1023/A:1018510323541.
[19] Gedney S.D. and Roden J. A., Numerical Stability of Nonorthogonal FDTD Methods, IEEE Transactions on Antennas & Propagation, 48, 231-239, 2000 https://doi.org 10.1109/8.833072.
[20] Piket-May M., Taflove A., and Baron J., FDTD Modeling of Digital Signal Propagation in 3D Circuits with Passive and Active Loads, IEEE Transactions on Microwave Theory and Techniques, 42, 1514-1523, 1994. https://doi.org 10.1109/22.297814
[21] Kelley D. F and Luebbers R. J., Piecewise linear Recursive Convolution for Dispersive Media Using FDTD, IEEE Transactions on Antennas & Propagation, 44, 792-797, June 1996. https://doi.org 10.1109/8.509882.
[22] Song W, Hao Y. and Parini C. G., Comparison of Nonorthogonal FDTD and Yee’s Algorithm in Modelling Photonic Bandgap Structures, International Symposium on Antennas and Propagation ISAP,14,2006, https://www.ieice.org/~isap/ISAP_Archives/2006/pdf/1C2b-3.pdf.