مقالۀ پژوهشی: اثر دما بر درهم‌تنیدگی هیبریدی اسپین- نوسانگری الکترون در یک نقطه کوانتومی دوبعدی ناهمسانگرد

نوع مقاله : مقاله پژوهشی

نویسندگان

استادیار، گروه آموزش فیزیک، دانشگاه فرهنگیان، تهران، ایران

چکیده

درهم­تنیدگی نقشی اساسی در محدوده محاسبات کوانتومی و ارتباطات کوانتومی ایفا می‌کند. در شرایط حقیقی، یک سامانه فیزیکی هرگز ایزوله نیست و به‌صورت اجتناب‌ناپذیری با محیط اطراف خود برهم‌کنش دارد. دما یکی از این اثرات است که به‌صورت کلان سبب کاهش درهم‌تنیدگی می‌شود. سامانه در شرایط حقیقی در دمایی غیرصفر قرار داشته که منجر به یک حالت آمیخته خواهد شد. ازاین‌رو، در این مقاله درهم­تنیدگی گرمایی هیبریدی اسپین- ­نوسانگری الکترون در یک نقطه کوانتومی دوبعدی ناهمسانگرد با استفاده از سنجه منفیت بررسی می‌شود. نتایج نشان می­دهد که درهم‌تنیدگی‌های هیبریدی به تغییرات متغییر­های قابل ‌کنترل، چون پارامتر راشبا و میدان مغناطیسی بسیار وابسته است. درهم‌تنیدگی گرمایی بین اسپین و اجتماع نوسانگرها در دمای صفر مطلق صفر بوده و با افزایش دما به یک بیشینه رسیده و پس از آن به صورت مجانبی به سمت صفر میل می‌کند. این دما، که در آن میزان درهم­تنیدگی به بیشینه مقدار خود می­رسد، را می­توان با تغییر میدان مغناطیسی و جفتیدگی راشبا کنترل کرد. این دو عامل همچنین آهنگ رسیدن به حالت مجانبی را کنترل می‌نمایند.  این نتایج روشی برای کنترل میزان درهم‌تنیدگی میان درجات آزادی الکترون، که نیاز اساسی پردازش اطلاعات کوانتومی است، در دسترس می­گذارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Research Paper: Temperature Effect on the Hybrid Electron Spin- oscillation Entanglement in an Anisotropic Two- dimensional Quantum Dot

نویسندگان [English]

  • Fatemeh Amiri
  • Fatemeh Mohammadpour
Assistant Professor, Department of Physics Education, Farhangian University, Tehran, Iran
چکیده [English]

Entanglement plays a fundamental role in the field of quantum computing and quantum communication. In real conditions, a physical system is never isolated and inevitably interacts with its surroundings. Temperature is one of these effects that mainly reduces entanglement. In real conditions, the system is at a non-zero temperature, which will lead to a mixed state. Therefore, in the present work, the combined thermal entanglement of electron spin-oscillation in an anisotropic two-dimensional quantum dot is investigated using the negativity criterion. The results show that the combined entanglements are strongly dependent on the changes of the controllable parameters, such as the Rashba parameter and the magnetic field. The thermal entanglement between the spin and the assembly of oscillators is zero at absolute zero temperature and reaches a maximum with increasing temperature and then tends to zero asymptotically. This temperature, at which the amount of entanglement reaches its maximum value, can be controlled by changing the magnetic field and the coupling of the Rashba parameter. These two factors also control the rate of reaching the asymptotic state. These results provide a way to control the degree of entanglement between electron degrees of freedom, which is a fundamental requirement of quantum information processing.

کلیدواژه‌ها [English]

  • Hybrid Entanglement
  • Anisotropic Quantum Dot
  • The Rashba Parameter
  • Magnetic Field
[1] Luo, W., Cao, L., Shi, Y., Wan, L., Zhang, H., Li, S., ... & Liu, A. Q., “Recent progress in quantum photonic chips for quantum communication and internet”, Light: Science & Applications12(1), 175, 2023. https://doi.org/10.1038/s41377-023-01173-8
[2] Wu, S. M., Liu, D. D., Wang, C. X., & Huang, X. L., “Entanglement of Hybrid State in Noninertial Frame”, International Journal of Theoretical Physics62(2), 39, 2023. https://doi.org/10.1007/s10773-023-05297-w
[3] Zhang, F. Y., & Yang, C. P., “Generation of generalized hybrid entanglement in cavity electro–optic systems”, Quantum Science and Technology, 6(2), 025003, 2021. https://doi.org/10.1088/2058-9565/abd221
[4] Wu, S. M., Liu, D. D., Wang, C. X., & Huang, X. L., “Entanglement of Hybrid State in Noninertial Frame”, International Journal of Theoretical Physics, 62(2), 39, 2023. https://doi.org/10.1007/s10773-023-05297-w
[5] Chen, Y., Gao, J. U. N., Li, Z., YAN, Z., WANG, H., & Jin, X., “Spn-Orbit Hybrid Entangled State in a Photonic Chip”, Available at SSRN 4334140. http://dx.doi.org/10.2139/ssrn.4334140
[6] Nape, I., de Oliveira, A. G., Slabbert, D., Bornman, N., Francis, J., Ribeiro, P. H. S., & Forbes, A., “An all-digital approach for versatile hybrid entanglement generation”, Journal of Optics, 24(5), 054003, 2022. https://doi.org/10.1088/2040-8986/ac5a7d
[7] Debald, S., & Emary, C., “Spin-orbit-driven coherent oscillations in a few-electron quantum dot”, Physical review letters, 94(22), 226803, 2005. https://doi.org/10.1103/PhysRevLett.94.226803
[8] Debald, S., “Interaction and confinement in nanostructures: Spin-orbit coupling and electron-phonon scattering”, Doctoral dissertation, Staats-und Universitätsbibliothek Hamburg Carl von Ossietzky, 2005.
[9] Koga, T., Nitta, J., Akazaki, T., & Takayanagi, H., “Rashba spin-orbit coupling probed by the weak antilocalization analysis in InAlAs/InGaAs/InAlAs quantum wells as a function of quantum well asymmetry”, Physical review letters, 89(4), 046801, 2002. https://doi.org/10.1103/PhysRevLett.89.046801
[10] Bychkov, Y. A., & Rashba, E. I., “Oscillatory effects and the magnetic susceptibility of carriers in inversion layers”, Journal of physics C: Solid state physics, 17(33), 6039, 1984. https://doi.org/10.1088/0022-3719/17/33/015
[11] Sheng, J. S., & Chang, K., “Spin states and persistent currents in mesoscopic rings: Spin-orbit interactions”, Physical Review B, 74(23), 235315, 2006. https://doi.org/10.1103/PhysRevB.74.235315
[12] Erhard, M., Krenn, M., & Zeilinger, A., “Advances in high-dimensional quantum entanglement”, Nature Reviews Physics, 2(7), 365-381, 2020. https://doi.org/10.1038/s42254-020-0193-5
[13] Zhahir, A. A., Mohd, S. M., Shuhud, M. I. M., Idrus, B., Zainuddin, H., Jan, N. M., & Wahiddin, M. R., “Quantum Computing and Its Application”, International Journal of Advanced Research in Technology and Innovation, 2022. https://myjms.mohe.gov.my/index.php/ijarti/article/view/17429
[14] Zou, N., “Quantum entanglement and its application in quantum communication”, In Journal of Physics: Conference Series (Vol. 1827, No. 1, p. 012120). IOP Publishing, 2021, March. https://doi.org/10.1088/1742-6596/1827/1/012120
[15] Gill, S. S., Kumar, A., Singh, H., Singh, M., Kaur, K., Usman, M., & Buyya, R., “Quantum computing: A taxonomy, systematic review and future directions”, Software: Practice and Experience, 52(1), 66-114, 2022. https://doi.org/10.1002/spe.3039
[16] Wang, L., Rastelli, A., Kiravittaya, S., Atkinson, P., Ding, F., Bufon, C. B., ... & Schmidt, O. G., “Towards deterministically controlled InGaAs/GaAs lateral quantum dot molecules”, New Journal of Physics, 10(4), 045010, 2008. https://doi.org/10.1088/1367-2630/10/4/045010
[17] Ando, T., Fowler, A. B., & Stern, F., “Electronic properties of two-dimensional systems”, Reviews of Modern Physics, 54(2), 437, 1982. https://doi.org/10.1103/RevModPhys.54.437
[18] Ihnatsenka, S., & Zozoulenko, I. V., “Spin polarization of edge states and the magnetosubband structure in quantum wires”, Physical Review B, 73(7), 075331, 2006. https://doi.org/10.1103/PhysRevB.73.075331
[19] Ihnatsenka, S., & Zozoulenko, I. V., “Spin polarization of edge states and the magnetosubband structure in quantum wires”, Physical Review B73(7), 075331, 2006. https://doi.org/10.1103/PhysRevB.73.075331
[20] Stano, P., “Controlling electron quantum dot qubits by spin-orbit interactions”, 2007. (Doctoral dissertation).
[21] Safaiee, R., Aghel, F., & Golshan, M. M., “Thermal entanglement of electronic spin–subband in a Rashba isotropic two-dimensional nanodot”, Superlattices and Microstructures, 67, 221-232, 2014. https://doi.org/10.1016/j.spmi.2014.01.006
[22] Dicke, R. H., “Coherence in spontaneous radiation processes”, Physical review, 93(1), 99, 1954. https://doi.org/10.1103/PhysRev.93.99
[23] Lücke, B., Peise, J., Vitagliano, G., Arlt, J., Santos, L., Tóth, G., & Klempt, C., “Detecting multiparticle entanglement of Dicke states”, Physical review letters, 112(15), 155304, 2014. https://doi.org/10.1103/PhysRevLett.112.155304