مقالۀ پژوهشی: بررسی تأثیر دمای محیط بر پدیده رونویسی ژن: نمای لیاپانوف

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه فیزیک، دانشگاه صنعتی ارومیه، ارومیه، ایران

2 استاد، گروه فیزیک، دانشگاه صنعتی ارومیه، ارومیه، ایران

چکیده

 بیان ژن به عنوان پدیده­ای شناخته می­شود که زندگی انسان را شکل می­دهد. این پدیده بسیار پیچیده، از دو مرحله رونویسی و ترجمه شکل گرفته است. با توجه به اینکه دما ساعت زمانی سیستم­های زیست­شناختی است، در مطالعه حاضر، تأثیر دمای محیط از راه ترموستات نوز- هوور در الگو‌سازی ریاضی بیان ژن انجام شده است. در کار حاضر از رویکرد نمای لیاپانوف برای بررسی اثر کمیت­های کنترل بر بیان ژن، از جمله سرعت تخریب mRNA و پروتئین‌ها، یافتن نقاط بحرانی (محدودیت‌های مرزی پدیده)، مقادیر مرزی سطح mRNA و پروتئین استفاده شده است. سرعت تخریب در فرآیند سنتز پروتئین با کمک رویکرد نمای لیاپانوف بررسی شده است. این مطالعه نشان داد که دمای 306 کلوین دارای بیشینه سطح رونویسی mRNA برای باکتری اشریشیا کلی است. همچنین از راه رویکرد آشوب تایید شد که افزایش نرخ تخریب mRNA منجر به افزایش رونویسی و در نتیجه افزایش آشوبناکی سیستم می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Research Paper: Investigating the Effect of Environmental Temperature on the Phenomenon of Gene Transcription: Lyapunov Exponent

نویسندگان [English]

  • Fatemeh Nemati 1
  • Sohrab Behnia 2
1 PhD Student, Department of Physics, Urmia University of Technology, Urmia, Iran
2 Professor, Department of Physics, Urmia University of Technology, Urmia, Iran
چکیده [English]

Gene expression is known as a phenomenon that shapes human life. This very complex phenomenon is formed from two stages: transcription and translation. In this study, we used the Nose-Hoover thermostat to model the effect of ambient temperature on gene expression since temperature regulates the biological clock of living systems. We have used the Lyapunov exponent approach to investigate the effect of control parameters on gene expression, including the degradation rates of messenger RNA and proteins, and to find critical points (phenomenon boundary limits), mRNA, and protein level boundary values. The rate of degradation in the process of protein synthesis has been investigated with the help of the Lyapunov exponent approach. According to this study, the optimal temperature for the production of mRNA molecules by Escherichia coli bacteria is 306 Kelvin. The study also used the chaos approach to show that the faster the mRNA molecules are degraded, the more they are transcribed, and the more chaotic the system becomes.

کلیدواژه‌ها [English]

  • Gene Transcription
  • Lyapunov Exponent
  • Multi-fractal Spectrum
  • Environmental Temperature
  1. Dadpasand, , "Genes related to heat stress and the effect of heat on gene expression", The first national conference on the management of livestock and poultry breeding in tropical regions, Shahid Bahonar University, Kerman, Iran, 574-570, 2019, (in Persian)
  2. Abedi, M. H., Lee, J., Piraner, D. I., & Shapiro, M. G., "Thermal control of engineered T-cells", ACS Synthetic Biology, 9, 1941-1951, 2020. https://doi.org/10.1021/acssynbio.0c00238.
  3. Duong, L., Anastasopoulos, A., Chiang, D., Bird, S., & Cohn, T., “An attentional model for speech translation without transcription”, In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 949-954, 2016.
  4. Krebs, J. E., Goldstein, E. S., & Kilpatrick, S. T., "Lewin's genes XII", Jones & Bartlett Learning, 2017.
  5. Glass, D. S., Jin, X., & Riedel-Kruse, I. H., "Nonlinear delay diferential equations and their application to modeling biological network motifs", Nature communications, 12, 1-19, 2021. https://doi.org/10.1038/s41467-021-21700-8
  6. Wang, H. Kim, H. Park, J. S. Ki, "Temperature influences the content and biosynthesis gene expression of saxitoxins (STXs) in the toxigenic dinoflagellate Alexandrium pacificum", Science of The Total Environment, 802,149801. 2022. https://doi.org/10.1016/j.scitotenv.2021.149801.
  7. Voolstra, C. R., Schnetzer, J., Peshkin, L., Randall, C. J., Szmant, A. M., & Medina, M., "Effects of temperature on gene expression in embryos of the coral Montastraea faveolata", BMC genomics, 10, 1-9, 2009. https://doi.org/10.1186/1471-2164-10-627.
  8. Lo, M., Bulach, D. M., Powell, D. R., Haake, D. A., Matsunaga, J., Paustian, M. L., ... & Adler, B, "Effects of temperature on gene expression patterns in Leptospira interrogans serovar Lai as assessed by whole-genome microarrays", Infection and immunity, 74, 5848-5859, 2006. https://doi.org/10.1128/iai.00755-06.
  9. Chen, J., Nolte, V., & Schlötterer, C., "Temperature-related reaction norms of gene expression: regulatory architecture and functional implications", Molecular biology and evolution, 32, 2393-2402, 2015. https://doi.org/10.1093/molbev/msv120.
  10. Politis, S. N., Mazurais, D., Servili, A., Zambonino-Infante, J. L., Miest, J. J., Sørensen, S. R., ... & Butts, I. A., "Temperature effects on gene expression and morphological development of European eel, Anguilla anguilla larvae", PLoS One,12, 2017. https://doi.org/10.1371/journal.pone.0182726.
  11. Gadgil, M., Kapur, V., & Hu, W. S., "Transcriptional response of Escherichia coli to temperature shift", Biotechnology progress, 21,689-699, 2005. https://doi.org/10.1021/bp049630.
  12. Wimalasiri-Yapa, B. R., Barrero, R. A., Stassen, L., Hafner, L. M., McGraw, E. A., Pyke, A. T., ... & Frentiu, F. D., "Temperature modulates immune gene expression in mosquitoes during arbovirus infection", Open biology, 11, 2021. https://doi.org/10.1098/rsob.200246.
  13. Smoot, L. M., Smoot, J. C., Graham, M. R., Somerville, G. A., Sturdevant, D. E., Migliaccio, C. A. L., ... & Musser, J. M., "Global differential gene expression in response to growth temperature alteration in group A Streptococcus", Proceedings of the National Academy of Sciences, 98(18), 10416-10421, 2001. https://doi.org/10.1073/pnas.191267598.
  14. Wang, X., Han, J. N., Zhang, X., Ma, Y. Y., Lin, Y., Wang, H., ... & Chen, G. Q., "Reversible thermal regulation for bifunctional dynamic control of gene expression in Escherichia coli", Nature Communications, 12(1), 1411, 2021. https://doi.org/10.1038/s41467-021-21654-x.
  15. Park, K., & Kwak, I. S., "The effect of temperature gradients on endocrine signaling and antioxidant gene expression during Chironomus riparius development", Science of the total environment, 470, 1003-1011, 2014. https://doi.org/10.1016/j.scitotenv.2013.10.052.
  16. Franke, K., Karl, I., Centeno, T. P., Feldmeyer, B., Lassek, C., Oostra, V., ... & Fischer, K., "Effects of adult temperature on gene expression in a butterfly: identifying pathways associated with thermal acclimation", BMC Evolutionary Biology, 19(1), 1-16, 2019. https://doi.org/10.1186/s12862-019-1362-y.
  17. Malek, R. L., Sajadi, H., Abraham, J., Grundy, M. A., & Gerhard, G. S., "The effects of temperature reduction on gene expression and oxidative stress in skeletal muscle from adult zebrafish", Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 138(3), 363-373, 2004. https://doi.org/10.1016/j.cca.2004.08.014.
  18. Scheffer, H., Coate, J. E., Ho, E. K., & Schaack, S., "Thermal stress and mutation accumulation increase heat shock protein expression in Daphnia", Evolutionary Ecology, 36(5), 829-844, 2020. https://doi.org/10.1007/s10682-022-10209-1.
  19. Ko, M. S., "A stochastic model for gene induction", Journal of theoretical biology, 153, 181-194, 1991. https://doi.org/10.1016/S0022-5193(05)80421-7.
  20. Akutsu, T., Miyano, S., & Kuhara, S., "Identification of genetic networks from a small number of gene expression patterns under the Boolean network model", In Biocomputing99, 17-28, 1999. https://doi.org/10.1142/9789814447300_0003.
  21. Peccoud, J., & Ycart, B., "Markovian modeling of gene-product synthesis, Theoretical population biology, 48, 222-234, 1995. https://doi.org/10.1006/tpbi.1995.1027.
  22. Chen, H. L. He, G. M. Church, “Modeling gene expression with differential equations,” In Biocomputing’99, 29-40, 1999. https://doi.org/10.1142/9789814447300_0004.
  23. Murphy, K., & Mian, S., "Modelling gene expression data using dynamic Bayesian networks", Technical report, Computer Science Division, University of California, Berkeley, CA, 104,1999.
  24. Kim, P. M., & Tidor, B., "Limitations of quantitative gene regulation models: a case study", Genome Research, 13, 2391-2395, 2003. https://doi.org/ 1101/gr.1207003Genome Res. 2003. 13: 2391-2395.
  25. Monk, N. A., "Oscillatory expression of Hes1, p53, and NF-B driven by transcriptional time delays", Current Biology, 13, 1409-1413, 2003. https://doi.org/10.1016/S0960-9822(03)00494-9
  26. Wu, F. X., Zhang, W. J., & Kusalik, A. J., "Modeling gene expression from microarray expression data with state-space equations", In Biocomputing, 581-592, 2004. https://doi.org/10.1142/9789812704856_0054.
  27. Miller, E., pham, Hunt, J., Laplace, L., "A continuous model of gene expression", California State Polytechnic University, Pomona, 2005.
  28. Shen, J., Liu, Z., Zheng, W., Xu, F., & Chen, L., "Oscillatory dynamics in a simple gene regulatory network mediated by small RNAs", Physica A: Statistical Mechanics and its Applications, 388, 2995-3000, 2009. https://doi.org/10.1016/j.physa.2009.03.032.
  29. Peng, Y., Zhang, T., In Abstract and Applied Analysis. 2014.
  30. Huang, C., Cao, J., & Xiao, M., "Hybrid control on bifurcation for a delayed fractional gene regulatory network", Chaos, Solitons & Fractals, 87, 19-29, 2016. https://doi.org/10.1016/j.chaos.2016.02.036
  31. Agrawal, D. K., Tang, X., Westbrook, A., Marshall, R., Maxwell, C. S., Lucks, J., ... & Franco, E., "Mathematical modeling of RNA-based architectures for closed loop control of gene expression", ACS synthetic biology, 7, 1219-1228, 2018. https://doi.org/10.1021/acssynbio.8b00040
  32. Giovanini, G., Barros, L. R., Gama, L. R., Tortelli Jr, T. C., & Ramos, A. F., "A stochastic binary model for the regulation of gene expression to investigate responses to gene therapy", Cancers, 14, 633, 2022. https://doi.org/10.3390/cancers14030633.
  33. Munakata, T., "Mechanical and Langevin thermostats: Gulton staircase problem", Physical Review E, 59, 1999. https://doi.org/10.1103/PhysRevE.59.5045.
  34. Lemak, A. S., & Balabaev, N. K., "On the Berendsen thermostat", Molecular Simulation,13, 177-187, Sep, 1994.
  35. Behnia, S., Nemati, F., & Fathizadeh, S., "Modulation of spin transport in DNA-based nanodevices by temperature gradient: A spin caloritronics approach", Chaos, Solitons & Fractals, 116, 2018. https://doi.org/10.1016/j.chaos.2018.09.006.
  36. Charny, C. K., "Mathematical models of bioheat transfer", Advances in heat transfer, 22, 19--155, 1192. https://doi.org/10.1016/S0065-2717(08)70344-7.
  37. Chato, J. C., "Fundamentals of bioheat transfer", In Thermal dosimetry and treatment planning (pp. 56-1). Berlin, Heidelberg: Springer Berlin Heidelberg, 1990.
  38. Pennes, H. H., "Analysis of tissue and arterial blood temperatures in the resting human forearm", Journal of applied physiology, 1(2), 93-122, 1948. https://doi.org/10.1152/jappl.1948.1.2.93.
  39. Wulff, W., "The energy conservation equation for living tissue", IEEE transactions on biomedical engineering, (6), 494-495, 1947. https://doi.org/1109/TBME.1974.324342
  40. Klinger, H. G., "Heat transfer in perfused biological tissue—I: General theory", Bulletin of Mathematical Biology, 36, 403-415, 1974. https://doi.org/10.1016/S0092-8240(74)80038-8.
  41. Chen, M. M., & Holmes, K. R., "Microvascular contributions in tissue heat transfer", Annals of the New York Academy of Sciences, 335(1), 137-150, 1980. https://doi.org/10.1111/j.1749-6632.1980.tb50742.x.
  42. Weinbaum, S., & Jiji, L. M., "A new simplified bioheat equation for the effect of blood flow on local average tissue temperature", 1985. https://doi.org/10.1115/1.3138533.
  43. Damor, R. S., Kumar, S., & Shukla, A. K., "Solution of fractional bioheat equation in terms of Fox’s H-function", Springer Plus, 5, 1-10, 2018. https://doi.org/10.1186/s40064-016-1743-2.
  44. Ferrás, L. L., Ford, N. J., Morgado, M. L., Nóbrega, J. M., & Rebelo, M. S., "Fractional Pennes’ bioheat equation: theoretical and numerical studies", Fractional Calculus and Applied Analysis, 18, 1080-1106, 2015. https://doi.org/10.1515/fca-2015-0062.
  45. Goodwin, B. C., "Oscillatory behavior in enzymatic control processes", Advances in enzyme regulation, 3, 425-437, 1965. https://doi.org/10.1016/0065-2571(65)90067-1.
  46. Ratkowsky, D. A., Lowry, R. K., McMeekin, T. A., Stokes, A. N., & Chandler, R., Chandler, "Model for bacterial culture growth rate throughout the entire biokinetic temperature range", Journal of bacteriology, 154, 1222-1226, 1983. https://doi.org/10.1128/jb.154.3.1222-1226.1983.
  47. Ross, T., "A philosophy for the development of kinetic models in predictive microbiology", D diss, University of Tasmania, 1993.
  48. Blanchard, G. F., Guarini, J. M., Richard, P., Ph, G., & Mornet, F., "Quantifying the short-term temperature effect on light-saturated photosynthesis of intertidal microphytobenthos", Marine Ecology Progress Series, 134, 309-313, 1993. https://doi.org/3354/meps134309.
  49. Norberg, "Biodiversity and ecosystem functioning: a complex adaptive systems approach", Limnology and Oceanography, 49, no. 4part2, pp.1269-1277, Jul, 2004.  https://doi.org/10.4319/lo.2004.49.4_part_2.1269.
  50. Ratkowsky, D. A., Olley, J., McMeekin, T. A., & Ball, A., A. Ball, "Relationship between temperature and growth rate of bacterial cultures", Journal of bacteriology, 149, 1-5, 1982. https://doi.org/10.1128/jb.149.1.1-5.1982.
  51. Charlebois, D. A., Hauser, K., Marshall, S., & Balázsi, G., "Multiscale effects of heating and cooling on genes and gene networks", Proceedings of the National Academy of Sciences, 115, 10797-10806, 2018. https://doi.org/10.1073/pnas.1810858115.
  52. Ke, Q., Gong, X., Liao, S., Duan, C., & Li, L., "Effects of thermostats/barostats on physical properties of liquids by molecular dynamics simulations", Journal of Molecular Liquids, 365, 12011, 2022. https://doi.org/10.1016/j.molliq.2022.120116.
  53. Braga, C., & Travis, K. P., "A configurational temperature nos´e-hoover thermostat", The Journal of chemical physics, 123, 134101, 2005. https://doi.org/10.1063/1.2013227.
  54. Patra, P. K., & Bhattacharya, B., "Nonergodicity of the nose-hoover chain thermostat in computationally achievable time", Physical Review E, 90, 043304, 2014. https://doi.org/10.1103/PhysRevE.90.043304.
  55. Strogatz, H., "Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering", CRC press, 2018.
  56. Hilborn, C., "Chaos and nonlinear dynamics: an introduction for scientists and engineers", Oxford University Press on Demand, 2000.
  57. Wolf, A., Swift, J. B., Swinney, H. L., & Vastano, J. A, "Determining Lyapunov exponents from a time series", Physica D: nonlinear phenomena16, 285-317, 1985. https://doi.org/10.1016/0167-2789(85)90011-9.
  58. Lin, J., & Amir, A., "Homeostasis of protein and mRNA concentrations in growing cells", Nature communications, 9, 4496, 2018. https://doi.org/10.1038/s41467-018-06714-z.
  59. Buccitelli, C., & Selbach, M., mRNAs, "proteins and the emerging principles of gene expression control", Nature Reviews Genetics, 21, 630-644, 2020. https://doi.org/10.1038/s41576-020-0258-4.
  60. Asseng, S., Spänkuch, D., Hernandez-Ochoa, I. M., & Laporta, J., "The upper temperature thresholds of life", The Lancet Planetary Health, 5, 378-385, 2021. https://doi.org/10.1016/S2542-5196(21)00079-6.
  61. Kumar, P., & Libchaber, A., "Pressure and temperature dependence of growth and morphology of Escherichia coli: experiments and stochastic model", Biophysical journal, 105, 783-793, 2013. https://doi.org/10.1016/j.bpj.2013.06.029.
  62. Schiraldi, C., De Rosa, M., "Mesophilic organisms", Encyclopedia of membranes, 1-2,2014.
  63. Agarwal, V., & Kelley, D. R., "The genetic and biochemical determinants of mRNA degradation rates in mammals", Genome Biology, 23(1), 245, 2022. https://doi.org/10.1186/s13059-022-02811-x.
  64. Miller, D., Brandt, N., & Gresham, D., "Systematic identification of factors mediating accelerated mRNA degradation in response to changes in environmental nitrogen", PLoS Genetics, 14, 1007406, 2018. https://doi.org/10.1371/journal.pgen.1007406.
  65. Yamada, T., Nagahama, M., & Akimitsu, N., "Interplay between transcription and RNA degradation Gene", Expression and Regulation in Mammalian Cells, Transcription from General Aspects, 97-114, 2018. http://dx.doi.org/10.5772/intechopen.71862.
  66. Haimovich, G., Medina, D. A., Causse, S. Z., Garber, M., Millán-Zambrano, G., Barkai, O., ... & Choder, M., "Gene expression is circular: factors for mRNA degradation also foster mRNA synthesis", Cell, 153, 1000-1011, 2013. https://doi.org/10.1016/j.cell.2013.05.012.
  67. Shao, W., Guo, T., Toussaint, N. C., Xue, P., Wagner, U., Li, L., ... & Aebersold, R., "Comparative analysis of mRNA and protein degradation in prostate tissues indicates high stability of proteins", Nature communications, 10(1), 2524, 2019. https://doi.org/10.1038/s41467-019-10513-5.
  68. Schoenberg, D. R., & Maquat, L. E., "Regulation of cytoplasmic mRNA decay", Nature Reviews Genetics, 13(4), 246-259, 2012. https://doi.org/10.1038/nrg3160.
  69. Fabian, M. R., Sonenberg, N., & Filipowicz, W., "Regulation of mRNA translation and stability by microRNAs", Annual review of biochemistry, 79, 351-379, 2010. https://doi.org/10.1146/annurev-biochem-060308-103103.
  70. Nouaille, S., Mondeil, S., Finoux, A. L., Moulis, C., Girbal, L., & Cocaign-Bousquet, M., "The stability of an mRNA is influenced by its concentration: a potential physical mechanism to regulate gene expression", Nucleic Acids Research, 45, 11711-11724, 2017. https://doi.org/10.1093/nar/gkx781.
  71. Yang, E., van Nimwegen, E., Zavolan, M., Rajewsky, N., Schroeder, M., Magnasco, M., & Darnell, J. E., "Decay rates of human mRNAs: correlation with functional characteristics and sequence attributes", Genome research, 13, 1863-1872, 2003. http://doi.org/ 1101/gr.1272403Genome Res. 2003. 13: 1863-1872.
  72. Leppek, K., Byeon, G. W., Kladwang, W., Wayment-Steele, H. K., Kerr, C. H., Xu, A. F., ... & Das, R., "Combinatorial optimization of mRNA structure, stability, and translation for RNA-based therapeutics", Nature communications, 13, 1536, 2022. https://doi.org/10.1038/s41467-022-28776-w.