[1] Ezawa M., Topological origin of quasi-flat edge band in phosphorene, New Journal of Physics, 16, 115004-115017, 2014. https://doi.org/10.1088/1367-2630/16/11/115004/meta
[2] Liu H., Neal A.T., Zhu Z., Luo Z., Xu X., D. Tomanek, and Ye P.D., Phosphorene: An Unexplored 2D Semiconductor with a High Hole Mobility,
ACS Nano, 8, 4033-4041, 2014.
https://doi.org/10.1021/nn501226z
[3] Qingyun Wu, Lei Shen, Ming Yang, Yongqing Cai, Zhigao Huang, and Yuan Ping Feng, "Electronic and transport property of phosphorene nanoribbons", Phys. Rev. B, 92, 035436-035454, 2015. https://doi.org/10.1021/nn501226z
[4] Rudenko A.N., Katsnelson M.I., Quasiparticle band structure and tight-binding model for single and bilayer black phosphorus, Phys. Rev. B, 89, 201408-201413, 2014. https://doi.org/10.1103/PhysRevB.89.201408
[5] Amini M and Soltani M, Quantum transport through the edge states of zigzag phosphorene nanoribbons in presence of a single point defect: analytic green’s function method, Journal of Physics: Condensed Matter, 31, 215301-215311, 2019. https://doi.org/10.1088/1361-648X/ab09b8
[6] Zare M.H., Fazileh F, and Shahbazi.F,Zero Temperature Phase Diagram of the Classical Kane-Mele-Heisenberg Model, Phys. Rev. B, 87, 224416-221428, 2013. https://doi.org/ 10.1103/PhysRevB.87.224416
[7] Rezaei M., Karbaschi H., Amini M., Soltani M., and Rashedi G., Thermoelectric properties of armchair phosphorene nanoribbon in the presence of vacancy-induced impurity band, Nano technology, 32, 375704-375711, 2021. https://doi.org/ 10.1088/1361-6528/ac08ba
[8] Li L., Yu Y., Ye G.J, Ge Q., Ou X., Wu H., Feng D., Chen X.H., and Zhang. Y., Black phosphorus field-effect transistors,
Nature Nanotechnology, 9, 372-377, 2014.
https://doi.org/ 10.1038/nnano.2014.35
[9] Chang P.-H., Bahramy M.S.,Nagaosa N., and Nikoli B.K., Giant Thermoelectric Effect in Graphene-Based Topological Insulators with Heavy Adatoms and Nanopores, Nano Letters, 14, 3779-3784, 2014. https://doi.org/ 10.1088/1674-1056/aba9bf
[10] V. Wang, Y. Kawazoe, and W. T. Geng, Native point defects in few-layer phosphorene, Phys. Rev. B, 91, 045433-045442, 2015. https://doi.org/ 10.1103/PhysRevB.91.045433
[11] B. Kiraly, N. Hauptmann, A. N. Rudenko, M. I. Kat-snelson, and A. A. Khajetoorians, "Probing Single Vacancies in Black Phosphorus at the Atomic level",
Nano Lett. 17, 3607-3612, 2017.
https://doi.org/ 10.1021/acs.nanolett.7b00766
[12] Cupo A., Masih Das P., Chien C.-C., Danda G, Kharche N., Tristant D., Drndi M., and Meunier V., Periodic Arrays of Phosphorene Nanopores as Antidot Lattices with Tunabel Properties,
ACS Nano, 11, 7494-7507, 2017.
https://doi.org/ 10.1021/acsnano.7b04031
[13] Li L.L., and Peeters F.M., Quantum transport in defective phosphorene nanoribbons: Effects of atomic vacancies, Phys. Rev. B, 97, 075414-075423, 2018. https://doi.org/ 10.1103/PhysRevB.97.075414
[14]
Michael A. Nielsen and Isaac Chuang
, Quantum Computation and Quantum Information: 10th Anniversary Edition, Cambridge University Press,Cambridge,
1,50-100, 2010.
[15] Paez C.J., Bahamon D.A., Pereira A.L.C., Schulz A., Zigzag phosphorene nanoribbons: one-dimensional resonant channels in two-dimensional atomic crystals,
Beilstein J. Nanotechnol. 7, 1983-1990, 2016.
https://doi.org/ 10.3762/bjnano.7.189
[16] Economou E.N., Greens Functions in Quantum Physics, 3rd, Springer-Verlag, New York,3,10-15, 1979.