مقالۀ پژوهشی: آنالیز دوبعدی سرعت نقاط درخشان ناحیه انتقالی خورشید با روش ردیابی همبستگی موضعی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، دانشکده فیزیک، دانشگاه پیام نور، تهران، ایران

2 دانش‌آموختۀ کارشناسی ارشد، موسسه آموزش عالی عبدالرحمن صوفی رازی، زنجان، ایران

3 استادیار، گروه فیزیک، دانشکده علوم پایه، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران

چکیده

دانش ما در مورد منشاء و روشهای انتقال نقاط روشن در شبکه خورشید نقش مهمی در درک پرتاب مواد و انتقال انرژی به تاج خورشیدی دارد. درخارج از نواحی فعال خورشید باوجود اینکه خورشیدآرام نامیده می‌شود، پیوسته  انواع مختلفی از پدیده‌های کوچک مقیاس در مرزهای طرح­های سلولی بالای شبکه­ی مغناطیسی، رخ می‌دهد. شناخت نقاط درخشان کمک موثری در بررسی سیخک‌های خورشیدی دارد. در این پژوهش نقاط درخشان ناحیه انتقالی خورشید را مطالعه و سرعت ظاهری آن‌ها با روش ردیابی همبستگی موضعی فوریه ((FLCT مورد بررسی قرار گرفت.  نتایج این پژوهش نشان می­دهد که این نقاط از نظر جهت سرعت و میزان روشنایی با یکدیگر متفاوت­اند. طول عمر و میانگین سرعت افقی آن‌ها به ترتیب به اندازه تقریبی 100 ثانیه و 4 کیلومتر بر ثانیه برآورد شد. به تازگی، دسته جدیدی از سیخک‌های خورشیدی مشاهده شده که طول عمری در حدود  100ثانیه و سرعت افقی معادل 3-4 کیلومتر بر ثانیه دارند. با توجه به تحلیل دو بعدی سرعت ظاهری نقاط روشن بر روی مرز شبکه، این نقاط می­توانند همتای دیسک سیخک‌های نوع دوم باشند. همچنین تحلیل میدان دوبعدی سرعت‌ها، چرخش­هایی را در آن‌ها نشان می­دهد که می­تواند موجب برانگیخته شدن پالس­های آلفونی باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Research Paper: Two-dimensional Analysis of the Bright Points Velocity in the Solar Transition Region with the Local Correlation Tracking Method

نویسندگان [English]

  • Ehsan Tavabi 1
  • Masoumeh Tareh 2
  • Sima Zeighami 3
1 Associate Professor, Physics Department, Payame Noor University (PNU), Tehran, Iran
2 M. Sc. Graduated, Abdor Rahman Sufi Razi Higher Education Institute, Zanjan, Iran
3 Assistant Professor, Department of Physics, Tabriz Branch, Islamic Azad University, Tabriz, Iran
چکیده [English]

Our knowledge about the origin and transformation mechanisms of the bright points in the solar network has a significant role in understanding the ejection of materials and the transfer of energy into the solar corona. Outside the active region of the Sun (AR), although it is called the Quiet Sun (QS), various types of small-scale bright phenomena constantly occur within the boundary of the super granular cells above the magnetic network. Knowing the bright points is an effective key in considering the solar spicules. In this research, we study the solar transition region bright points and examine their apparent velocities with the local correlation tracking Fourier (FLCT) method. The results illustrate that these points differ in apparent velocity direction and brightness. Their lifetime and average horizontal velocity were estimated at 100 s and 4 kms-1, respectively. Recently, a new group of solar spicules has been observed, those lifetimes are around 100 s, and show a typical horizontal velocity of 3-4 kms-1. According to the analysis of the two-dimensional, apparent velocity of the bright points on the rosettes of the network, these points can be the disk counterpart of the type II spicules. In addition, the analysis of the two-dimensional field of velocities shows rotations that can cause the excitation of Alfvenic pulses.

کلیدواژه‌ها [English]

  • Solar Bright Points
  • FLCT
  • Alfvenic Pulses
[1] Martínez-Sykora, J., van der Voort, L.R., Carlsson, M., De Pontieu, B., Pereira, T., Boerner, P., Hurlburt, N., Kleint, L., Lemen, J., Tarbell, T.D. and Wuelser, J.P., “Internetwork chromospheric bright grains observed with IRIS and SST”, The Astrophysical Journal, 803, 2015. https://doi.org /10.1088/0004-637X/803/1/44.
[2] Javaherian, M., Safari, H., Amiri, A. and Ziaei, S., “Automatic Method for Identifying Photospheric Bright Points and Granules Observed by Sunrise”, Solar Physics, 289, 3969, 2014.  https://doi.org/ 10.1007/s11207-014-0555-1. 
[3] Shokri, Z., Alipour, N., Safari, H., Kayshap, P., Podladchikova, O., Nigro, G. and Tripathi, D.,  “Synchronization of Small-scale Magnetic Features, Blinkers, and Coronal Bright Points”,  ApJ, 926, 42, 2022. https://doi.org/ 10.3847/1538-4357/ac4265. 
[4] Alipour, N., Safari, H., Verbeeck, C., Berghmans, D., Auchère, F., Chitta, L.P., Antolin, P., Barczynski, K., Buchlin, É., Cuadrado, R.A. and Dolla, L., “Automatic detection of small-scale EUV brightenings observed by the Solar Orbiter/EUI”, Astronomy & Astrophysics, 663, A128, 2022.  https://doi.org/ 10.1051/0004-6361/202243257.
[5] Brueckner, G.E. and Bartoe, J.D., “Observations of high-energy jets in the corona above the quiet sun, the heating of the corona, and the acceleration of the solar wind”,  ApJ, 272, 329, 1983. https://doi.org/ 10.1086/161297.
[6] Tavabi, E., Zeighami, S. and Heydari, M., “Dynamics of Explosive Events Observed by the Interface Region Imaging Spectrograph”, Solar Phys, 297, 7, 76, 2022. https://doi.org/10.1007/s11207-022-01990-x.
[7] Chen, Y., Tian, H., Huang, Z., Peter, H. and Samanta, T., “Investigating the Transition Region Explosive Events and Their Relationship to Network Jets”, ApJ, 873, 79C, 2019.  https://doi.org/10.3847/1538-4357/ab0417.
[8] Tziotziou, K., Tsiropoula, G. and Mein, P., “on the nature of the chromospheric fine structure I. Dynamics of dark mottles and grains”, Astronomy and Astrophysics, 402, 361, 2003. https://doi.org/10.1051/0004-6361:20030220.
[9] Jafarzadeh, S., Solanki, S.K., Stangalini, M., Steiner, O., Cameron, R.H. and Danilovic, S., “High-frequency Oscillations in Small Magnetic Elements Observed with Sunrise/SuFI”, ApJ, 229,10, 2017. https://doi.org/ 10.3847/1538-4365/229/1/10.
[10] De Wijn, A.G., Lites, B.W., Berger, T.E., Frank, Z.A., Tarbell, T.D. and Ishikawa, R., “Hinode Observations of Magnetic Elements in Internetwork Areas”,  ApJ, 684, 1469, 2008. https://doi.org/ 0.48550/arXiv.0806.0345.
[11] Tavabi, E., Ajabshirizadeh, A., Ahangarzadeh Maralani, A.R. and Zeighami, S., “Spicules Intensity Oscillations in SOT/HINODE Observations”,  J. Astrophys. Astron., 36, 307, 2015. https://doi.org/10. 1007/s12036-015-9335-z.
[12] Tavabi, E., Zeighami, S. and Heydari, M., “Dynamics of Explosive Events Observed by the Interface Region Imaging Spectrograph”, Solar Physics, 297, 7, 76, 2022. https://doi.org 10.1007/s11207-022-01990-x.
[13] Zeighami, S., Tavabi, E. and Amirkhanlou, E., “Waves propagation in network and inter-network bright points channels between the chromosphere and transition regions with IRIS observations”, JApA, 41, 18Z, 2020. https://doi.org/10.1007/s12036-020-09633y.
[14] Zeighami, S., Ahangarzadeh Maralani, A.R., Tavabi, E. and Ajabshirizadeh, A., “Evidence of Energy Supply by Active-Region Spicules to the Solar Atmosphere”, Solar Physics, 291, 847–858, 2016.  https://doi.org/10.1007/s11207-016-0866-5.
[15] Riethmüller, T.L., Solanki, S.K., Van Noort, M. and Tiwari, S.K., “Vertical flows and  mass flux balance of sunspot umbbral dots”, Astronomy & Astrophysics, 554, A53, 5, 2013. https://doi.org /10.1051/0004-6361/201321075.
[16] November, L.J. and Simon, G.W., “Precise Proper-Motion Measurement of Solar Granulation”, Astrophys. J., 333, 427, 1988. https://doi.org /10.1086/166758.
[17] Hudson H. S., Fisher G. H., and Welsch B. T, “Flare Energy and Magnetic Field Variation, Subsurface and Atmospheric Influences on Solar Activity”, ASP Conference Series, proceedings of the conference held 16-20, at the National Solar Observatory, Sacramento Peak, Sunspot, New Mexico, USA 2008.
[18] Fisher, G.H. and Welsch, B.T., “FLCT: a fast, efficient method for performing local correlation tracking”, ASP Conf. Ser., 383, 373–380, 2008. https://doi.org /10.48550/arXiv.0712.4289.
[19] Welsch, B.T., Fisher, G.H., Abbett, W.P. and Regnier, S., “ILCT: Recovering photospheric velocities from magnetograms by combining the induction equation with local correlation tracking”, Astrophys. J., 610, 1148, 2004. https://doi.org / 10.1086/421767.
[20] Abramenko, V., Yurchyshyn, V. and Goode, P.R., “Size and Life Time Distributions of Bright Points in the Quiet Sun Photosphere”, American Geophysical Union, Fall Meeting 2010, abstract id.SH31C-1806, December 2010.
[21] Alipour, N., Safari, H. and Innes, D.E., “An Automatic Detection Method for Extreme-ultraviolet Dimmings Associated with Small-scale Eruption”, The Astrophysical Journal, Volume, 746(1), 12, 8, 2012. https://doi.org /10.1088/0004-637X/746/1/12.
[22] Zhao, L., Yang, P., Bai, H., Gong, X., Sang, M., Zhang, Y. and Yang, Y., “Statistical Properties of Magnetic Bright Points at Different Latitudes and Longitudes of the Sun”, Solar Physics, 299, 1, 2024. https://doi.org/10.1007/s11207-023-02242-2.
[23] De Pontieu, B., McIntosh, S., Hansteen, V.H., Carlsson, M., Schrijver, C.J., Tarbell, T.D., Title, A.M., Shine, R.A., Suematsu, Y., Tsuneta, S. and Katsukawa, Y., “a tale of two spicules: the impact of spicules on the magnetic choromosphere”, Astronomical Society of Japan, 59, 655, 2007. https://doi.org/10.1093/pasj/59.sp3.S655.
[24] Tavabi, E., “power spectrum analysis of limb and disk spicule using hinode Ca H line broadband filter”, Astrophysics and Space Science, 352(1), 43, 2014. https://doi.org /10.1007/s10509-014-1901-3.
[25] Tavabi, E., Koutchmy, S. and Ajabshirizadeh, A., “Increasing the Fine Structure Visibility of the Hinode SOT Ca II H Filtergrams”, Solar Phys., 283, 187, 2013. https://doi.org/10.1007/s11207-012-0011-z.
[26] Hagenaar, H.J., Schrijver, C.J. and Shine, R.A., “dispersal of magnetic flux in the quiet solar photosphere”, The Astrophysical Journal, 511(2), 932, 1999. https://doi.org/10.1086/306691.