مقالۀ پژوهشی: مطالعه ویژگی‌های الکترونیکی و مغناطیسی مکسین Nb2C به روش محاسبات ابتدا به ساکن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه فیزیک، دانشکده علوم، دانشگاه پیام نور، همدان، ایران

2 مربی، گروه کامپیوتر، داننشکده فنی، دانشگاه آزاد اسلامی، واحد اراک، مرکزی، ایران

چکیده

امروزه پژوهش‌ها به سمت یافتن مواد جدید برای کاربردهای گسترده، از پزشکی گرفته تا ذخیره انرژی و همچنین سایر اپتوالکترونیک‌ها، سوق داده شده است. به تازگی، فاز جدیدی از مواد به دلیل ماهیت انعطاف‌پذیر و ماشین‌کاری آن‌ها برجسته شده است که با نام MAX (Transition Metaln+1A(Al/Si)X(C/N)n) (مکس فازها) شناخته می‌شوند. به عبارت دیگر گروهی از فلزات واسطه و آلومینیوم یا سیلیکون که به صورت شیمیایی با کربن یا نیتروژن ترکیب می‌شوند، مکس فاز نامیده می‌شوند. نمونه‌های رایج از مکس فاز عبارتند از Ti2AlC، Ti2AlN، V2GeC، Nb2AlC  و غیره که با توجه به اهداف، در این کار از  Nb2AlC استفاده شده است.  مواد مکسین از این مکس فازها بدست می‌آیند. مکسین­ها دسته‌ای از مواد دو بعدی هستند که به دلیل ویژگی‌های منحصر به فرد و کاربردهای بالقوه خود توجه زیادی را در جامعه علمی به خود جلب کرده‌اند. در حقیقت، کاربیدها، کربنیتریدها و نیتریدهای فلزات واسطه­ی دوبعدی، به عنوان مکسین­ها شناخته می‌شوند. روش‌های مختلفی جهت به دست آوردن مکسین­ها وجود دارد که به صورت کلی به دو دسته تجربی و شبیه‌سازی تقسیم می‌شوند. استفاده از روش شبیه‌سازی مقرون به صرفه می‌باشد. همچنین، به دلیل دوری از خطاهای آزمایشگاهی دارای دقت بالایی است. از این‌رو، در کار پیشرو جهت یافتن مکسین Nb2C و محاسبات مربوطه این روش بکار گرفته شده است. برای این منظور از تئوری تابعی چگالی و به روش ابتدا به ساکن که مبنای بسته­ی نرم افراری کوانتوم اسپرسو را تشکیل می­دهند، جهت بررسی ویژگی‌های الکترونیکی و مغناطیسی مکسین Nb2C استفاده شده است. نتایج بدست آمده نشان می‌دهد که این ترکیب پایداری خوبی داشته و از لحاظ الکترونیکی رسانایی مناسبی دارد ولی قابلیت مغناطیس‌شدگی ندارد. جهت اطمینان یافتن از نتایج بدست آمده، آن‌ها را با نتایج کارهای تجربی و شبیه‌سازی دیگر پژوهشگران مقایسه و مشخص شد که هماهنگی بسیار خوبی با هم دارند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Study the Electronic Structure and Magnetic Properties of Mxene Nb2C Using Ab-initio Study Method

نویسندگان [English]

  • Ali Hossein Mohammad Zaheri 1
  • Hadi Mohammad Zaheri 2
1 Assistant Professor, Department of Physics, Faculty of Science, Payame Noor University, Hamedan, Iran
2 Instructor, Department of Computer, Faculty of Engineering, Islamic Azad University, Branch of Arak, Markazi, Iran
چکیده [English]

Today, research is directed toward finding new materials for various applications, from medicine to energy storage and other optoelectronic devices. Recently, a new phase of materials has been highlighted due to their flexible and machining nature known as Max Phases (Transition Metaln+1A(Al/Si)X(C/N)n) (MAX Phases). According to them, MAX Nb2AlC has been used in this work. Mxenes materials are obtained from these MAX phases by removing aluminum. There are different methods to obtain these two-dimensional materials, which are generally divided into two categories: experimental and simulation. Using the simulation method is more accurate due to being away from laboratory errors and cost-effective. Therefore, in this work, this method has been used to obtain Mxene niobium carbide and related calculations. For this purpose, the density functional theory and ab-initio method, which form the basis of the quantum espresso software package have been used to investigate the electronic and magnetic properties of this two-dimensional material. The obtained results show that this compound has good stability and good electronic conductivity, but it cannot be magnetized. To ensure the results of this research, the obtained results were compared with the results of experimental works and simulations of other researchers and it was found that they correspond very well.

کلیدواژه‌ها [English]

  • Niobium Carbide
  • Mxenes
  • Quantum Espresso Computing Package
  • 2D Materials
  • Density Functional Theory
  [1] Chia, X. and Pumera, M., "Characteristics and performance of two-dimensional materials for electrocatalysis", Nature Catalysis 1(12), 909-921, 2018. https://doi.org/10.1038/s41929-018-0181-7.
  [2] Luo, B., Liu, G. and Wang, L., "Recent advances in 2D materials for photocatalysis", Nanoscale 8(13), 6904-6920, 2016.
  [3] Choi, W., Choudhary, N., Han, G.H., Park, J., Akinwande, D. and Lee, Y.H., "Recent development of two-dimensional transition metal dichalcogenides and their applications", Materials Today 20(3), 116-130, 2017. https://doi.org/10.1016/j.mattod.2016.10.002.
  [4] Merlo, A., Mokkapati, V.R.S.S., Pandit, S. and Mijakovic, I., "Boron nitride nanomaterials: biocompatibility and bio-applications", Biomaterials science 6(9), 2298-2311, 2018.https://doi.org/10.1039/C8BM00516H.
  [5] Mohajerani, A., Faraei, Z. and Jafari, S.A., "NMR diagnosis of pseudo-scalar superconductivity in 3D Dirac materials", Journal of Physics: Condensed Matter 30(50), 50LT01, 2018. https://doi.org/10.1088/1361-648X
  [6] Ao, K.L., Shao, Y., Chan, I.N., Shi, X., Kawazoe, Y., Yang, M., Ng, K.W. and Pan, H., "Design of novel pentagonal 2D transitional-metal sulphide monolayers for hydrogen evolution reaction", International Journal of Hydrogen Energy 45(32), 16201-16209, 2020. https://doi.org/10.1016/j. ijhydene.2020.04092
  [7] Colson, J.W. and Dichtel, W.R., "Rationally synthesized two-dimensional polymers", Nature chemistry 5(6), 453-465, 2013. https://doi.org/10.1038/nchem.1628
  [8] Ma, R. and Sasaki, T., "Nanosheets of oxides and hydroxides: ultimate 2D charge‐bearing functional crystallites", Advanced materials 22(45), 5082-5104, 2010. https://doi.org/10.1002/adma.201001722
  [9] Molle, A., Goldberger, J., Houssa, M., Xu, Y., Zhang, S.C. and Akinwande, D., "Buckled two-dimensional Xene sheets", Nature materials 16(2), 163-169, 2017. https://doi.org/10.1038/nmat4802
  [10] Grazianetti, C., Martella, C. and Molle, A., "The Xenes generations: a taxonomy of epitaxial single‐element 2D materials", physica status solidi (RRL)–Rapid Research Letters 14(2), 1900439, 2020. https://doi.org/10.1002/pssr.201900439
  [11] Naguib, M., Kurtoglu, M., Presser, V., Lu, J., Niu, J., Heon, M., Hultman, L., Gogotsi, Y. and Barsoum, M.W., "Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2", In MXenes, pp. 15-29. Jenny Stanford Publishing, 2011. https://doi.org/10.1002/adma.201102306.
  [12] Gogotsi, Y. and Anasori, B., "The rise of MXenes", ACS nano 13(8), 8491-8494, 2019. https://doi.org/10.1021/
  [13] Anasori, B., Xie, Y., Beidaghi, M., Lu, J., Hosler, B.C., Hultman, L., Kent, P.R., Gogotsi, Y. and Barsoum, M.W., "Two-dimensional, ordered, double transition metals carbides (MXenes)", ACS nano 9(10), 9507-9516, 2015. https://doi.org/10.1021/acsnano.5b03591
  [14] Anasori, B., Lukatskaya, M.R. and Gogotsi, Y., "2D metal carbides and nitrides (MXenes) for energy storage", Nature Reviews Materials 2(2), 1-17, 2017. 10.1038/natrevmats.2016.98
  [15] Khazaei, M., Mishra, A., Venkataramanan, N.S., Singh, A.K. and Yunoki, S., "Recent advances in MXenes: From fundamentals to applications", Current Opinion in Solid State and Materials Science 23(3), 164-178, 2019. https://doi.org/10.1016/j.cossms.2019.01.002
  [16] Khazaei, M., Ranjbar, A., Esfarjani, K., Bogdanovski, D., Dronskowski, R. and Yunoki, S., "Insights into exfoliation possibility of MAX phases to MXenes", Physical Chemistry Chemical Physics 20(13), 8579-8592, 2018. https://doi.org/10.1039/C7CP08645H
  [17] Wu, X., Huang, B., Wang, Q. and Wang, Y., "High energy density of two-dimensional MXene/NiCo-LDHs interstratification assembly electrode: understanding the role of interlayer ions and hydration", Chemical Engineering Journal 380, 122456, 2020. https://doi.org/10.1016/j.cej.2019.122456  
  [18] Zhang, S. and Han, W.Q., "Recent advances in MXenes and their composites in lithium/sodium batteries from the viewpoints of components and interlayer engineering", Physical Chemistry Chemical Physics 22(29), 16482-16526, 2020. https://doi.org/10.1039/D0CP02275F
  [19] Faruk, M.O., Ahmed, A., Adak, B., Marzana, M., Hossain, M.M. and Mukhopadhyay, S., "High performance 2D MXene based conducting polymer hybrids: synthesis to emerging applications", Journal of Materials Chemistry C 9(32), 10193-10215, 2021. https://doi.org/10.1039/D1TC02240G.
  [20] Faruk, Md Omar, Abbas Ahmed, Bapan Adak, Maliha Marzana, Md Milon Hossain, and Samrat Mukhopadhyay. "High performance 2D MXene based conducting polymer hybrids: synthesis to emerging applications", Journal of Materials Chemistry C 9, no. 32 (2021): 10193-10215. https://doi.org/10.101126/sciadv.aau092
  [21] Quain, E., Mathis, T.S., Kurra, N., Maleski, K., Van Aken, K.L., Alhabeb, M., Alshareef, H.N. and Gogotsi, Y., "Direct writing of additive‐free MXene‐in‐Water ink for electronics and energy storage", Advanced Materials Technologies 4(1), 1800256, 2019. https://doi.org/10.101126/sciadv.aau092
  [22] Wu, Y., Ding, L., Lu, Z., Deng, J. and Wei, Y., "Two-dimensional MXene membrane for ethanol dehydration", Journal of Membrane Science 590, 117300, 2019. https://doi.org/10.1016/j.memsci.2019.117300
  [23] Hu, M., Li, Z., Li, G., Hu, T., Zhang, C. and Wang, X., "All‐solid‐state flexible fiber‐based MXene supercapacitors", Advanced Materials Technologies 2(10), 1700143, 2017. https://doi.org/10.1002/admt.201700143
  [24] Zhao, D., Zhao, R., Dong, S., Miao, X., Zhang, Z., Wang, C. and Yin, L., "Alkali-induced 3D crinkled porous Ti 3 C 2 MXene architectures coupled with NiCoP bimetallic phosphide nanoparticles as anodes for high-performance sodium-ion batteries", Energy & Environmental Science 12(8), 2422-2432, 2019. https://doi.org/10.1039/C9EE00308H
  [25] Xue, Q., Zhang, H., Zhu, M., Pei, Z., Li, H., Wang, Z., Huang, Y., Deng, Q., Zhou, J., Du, S. and Huang, Q., "Photoluminescent Ti3 C2 MXene Quantum Dots for Multicolor Cellular Imaging", Advanced Materials (Deerfield Beach, Fla.) 29(15), 2017. https://doi.org/10.1002/adma.201604847
  [26] Soleymaniha, M., Shahbazi, M.A., Rafieerad, A.R., Maleki, A. and Amiri, A., "Promoting role of MXene nanosheets in biomedical sciences: therapeutic and biosensing innovations", Advanced healthcare materials 8(1), 1801137, 2019. https://doi.org/10.1002/adhm.201801137
  [27] Chen, L., Dai, X., Feng, W. and Chen, Y., "Biomedical applications of MXenes: from nanomedicine to biomaterials", Accounts of Materials Research 3(8), 785-798, 2022. https://doi.org/10.1021/accountsmr.2c00025
  [28] Kim, H., Wang, Z. and Alshareef, H.N., "MXetronics: Electronic and photonic applications of MXenes", Nano Energy 60, 179-197, 2019. https://doi.org/10.1016/j.nanoen.2019.03.020
  [29] Sun, Y. and Li, Y., "Potential environmental applications of MXenes: A critical review", Chemosphere 271, 129578, 2021.
  [30] Jiang, Q., Wu, C., Wang, Z., Wang, A.C., He, J.H., Wang, Z.L. and Alshareef, H.N., "MXene electrochemical microsupercapacitor integrated with triboelectric nanogenerator as a wearable self-charging power unit", Nano Energy 45, 266-272, 2018.  https://doi.org/10.1016/j.nanoen.2018.01.004
  [31] Yuan, Y., Xu, R., Xu, H.T., Hong, F., Xu, F. and Wang, L.J., "Nature of the band gap of halide perovskites ABX3 (A= CH3NH3, Cs; B= Sn, Pb; X= Cl, Br, I): First-principles calculations", Chinese Physics B 24(11), 116302, 2015. https://doi.org/10.1088/1674-1056/24/11/116302
  [32] Lang, L., Yang, J.H., Liu, H.R., Xiang, H.J. and Gong, X.G., "First-principles study on the electronic and optical properties of cubic ABX3 halide perovskites", Physics Letters A 378(3), 290-293, 2014.
https://doi.org/10.48550/arXiv.1309.0070
  [33] Perdew, John P., Kieron Burke, and Matthias Ernzerhof. "Generalized gradient approximation made simple." Physical review letters 77(18), 3865, 1996. https://doi.org/10.1103/PhysRevLett.77.3865
  [34] Torrent, M., Jollet, F., Bottin, F., Zérah, G. and Gonze, X., "Implementation of the projector augmented-wave method in the ABINIT code: Application to the study of iron under pressure." Computational Materials Science 42(2), 337-351, 2008. https://doi.org/10.1016/j.commatsci.2007.07.020
  [35] Pulay, P., "Convergence acceleration of iterative sequences. The case of SCF iteration", Chemical Physics Letters 73(2), 393-398, 1980. https://doi.org/10.1016/0009-2614(80)80396-4
  [36] Ponnalagar, D., Hang, D.R., Islam, S.E., Liang, C.T. and Chou, M.M., "Recent progress in two-dimensional Nb2C MXene for applications in energy storage and conversion." Materials & Design 231, 112046, 2023. https://doi.org/10.1016/j.matdes.2023.112046
  [37] Xu, G., Wang, J., Zhang, X. and Yang, Z., "First principles study on geometric and electronic properties of two-dimensional Nb2CT x MXenes", Chinese Physics B 31(3), 037304, 2022. https://doi.org/10.1088/1674-1056/ac322e