مقالۀ پژوهشی: برآورد کسر فرار ذره آلفا از لکه ی داغ دوتریوم-تریتیوم آلاییده

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموختۀ کارشناسی ارشد، گروه فیزیک، دانشکده علوم پایه، دانشگاه گیلان، گیلان، ایران

2 دانشیار، گروه فیزیک، دانشکده علوم پایه، دانشگاه گیلان، گیلان، ایران

چکیده

نِهشت انرژی ذرات آلفای بدست آمده از گداخت هسته‌ای سوخت دوتریوم- تریتیوم(DT) از جمله چالش‌های مهم در همجوشی محصور شدگی لختی است. پایداری شرایط اشتعال، منوط به افروزش خود- ­نگهدار پلاسمای لکّه داغ است. فرار بیش از حد انرژی از لکّه داغ به سَرمایش و خاموشی سریع آن منجر می‌شود. ما در این پژوهش به بررسی سهم مؤلفه­های الکترونی و یونی پلاسما در محاسبه کسر فرار و توقف ذرات باردار ناشی از گداخت، خواهیم پرداخت. ابتدا سهم پراکندگی زوایای کوچک در اتلاف انرژی ذره آلفا بر اساس مدل کروخین‌ـ­رُزانوف (KR) و سپس به کمک مدل توان ایستانندگی لی‌ـ ­پِتراسو (LP) اثر تجمّعی پراکندگی زوایای کوچک و بزرگ در اتلاف انرژی ذرات آلفا در دو حالت سوخت DT خالص و آلاییده یونی به صورت عددی بررسی شده است. نشان داده می‌شود که در سوخت پیش فشرده­ی افروزش سریع، سهم ایستانندگی مؤلفه الکترونی پلاسما تنها برای ذره آلفای پرانرژی غالب است. با این وجود، هم زمان با کند شدن ذره آلفا و گرمایش سوخت DT، سهم ایستانندگی مؤلفه­ی یونی پلاسما تقویت می‌گردد و برد ذره آلفا نسبت به حالت الکترونی خالص در بیشنه‌ترین حالت تا 50% کاهش می‌یابد. این اثر با افزایش چگالی سوخت و با تزریق ناخالصی به محیط پلاسمای سوخت DT، تشدید می‌گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Estimation of Escape Fraction of 𝛂-particle from a Contaminated Deuterium-Tritium Hot-spot

نویسندگان [English]

  • Seyyed Mohammad Eftekhari 1
  • Soheil Khoshbinfar 2
1 M. Sc. Graduated, Physics Department, Faculty of Sciences, University of Guilan, Guilan, Iran.
2 Associate Professor, Physics Department, Faculty of Sciences, University of Guilan, Guilan, Iran
چکیده [English]

The energy deposition of alpha particles resulting from nuclear fusion of deuterium-tritium (DT) fuel is one of the important challenges in inertial confinement fusion. The stability of ignition conditions is associated with the achievement of self-ignition in hot- spot plasma. Excessive escape of energy from the hot spot leads to its rapid cooling and quenching. In this research, we will examine the contribution of electronic and ionic plasma components in the calculation of the escape fraction and the stopping of charged particles produced by fusion reactions. First, the contribution of small-angle scattering in alpha particle energy loss based on the Krokhin-Rozanov (KR) model and then using the Li- Petrasso stopping power (LP), the cumulative effect of small and large angle scattering in the energy loss of alpha particles in two cases of pure and ion contaminated DT fuel has been investigated numerically. It is shown that in the pre-compressed fuel of fast ignition, the stopping of the electron component of the plasma is dominant only for the high-energy alpha particle. Nevertheless, at the same time as the alpha particle slows down and heats fuelplasma, the stopping contribution of the ion component of the plasma is strengthened and the range of the alpha particle decreases by up to 50% compared to the pure electron case. This effect is intensified by increasing the fuel density and by injecting impurities into the DT fuel plasma environment.

کلیدواژه‌ها [English]

  • Fast Ignition
  • Escape Probability
  • Impure Plasma Fuel
  • Alpha Particle Self-heating
  • Alpha-particles Energy Deposition
  • Impurity Ion
  1. Christopherson, A.R., Betti, R., Miller, S., Gopalaswamy, V., Mannion, O.M. and Cao, D., “Theory of ignition and burn propagation in inertial fusion implosions”, Physics of Plasmas, 27(5), 052708(24 pp), 2020. https://doi.org/10.1063/1.5143889.
  2. Fan, Z., Liu, Y., Liu, B., Yu, C., Lan, K. and Liu, J., “Non-equilibrium between ions and electrons inside hot spots from National Ignition Facility experiments”, Matter and Radiation at Extremes, 2(1), 3-8, 2017. https://dx.doi.org/10.1016/j.mre.2016.11.003.
  3. Hurricane, O.A., Callahan, D.A., Casey, D.T., Dewald, E.L., Dittrich, T.R., Döppner, T., Haan, S., Hinkel, D.E., Berzak Hopkins, L.F., Jones, O. and Kritcher, A.L., “Inertially confined fusion plasmas dominated by alpha-particle self-heating”, Nature Physics, 12(8), 800-806, 2016. https://doi.org/10.1038/nphys3720.
  4. Zou, D.B., Hu, L.X., Wang, W.Q., Yang, X.H., Yu, T.P., Zhang, G.B., Ouyang, J.M., Shao, F.Q. and Zhuo, H.B., “Tunable proton stopping power of deuterium-tritium by mixing heavy ion dopants for fast ignition”, High Energy Density Physics, 18, 1-6, 2016. https://doi.org/10.1016/j.hedp.2015.10.003.
  5. Khatami, S. and Khoshbinfar, S., “The Impact of Impurity Ion in Deuterium-Tritium Fuel on the Energy Deposition Pattern of the Proton Ignitor Beam”, Chinese Journal of Physics, 66, 620-629, 2020. https://doi.org/10.1016/j.cjph.2020.05.030.
  6. Krokhin, O.N. and Rozanov, V.B., “Escape of α particles from a laser-pulse-initiated thermonuclear reaction”, Soviet Journal of Quantum Electronics, 2(4), 393-394, 1973. https://doi.org/10.1070/­QE1973v002n04ABEH004476.
  7. Cooper, R.S. and Evans, F., “Alpha particle energy absorption in a reacting DT sphere”, Physics of Fluids, 18(3), 332–324, 1975. https://doi.org/10.1063/1.861142.
  8. Fraley, G.S., Linnebur, E.J., Mason, R.J. and Morse, R.L., “Thermonuclear burn characteristics of compressed deuterium‐tritium microsphere”, Physics of Fluids, 17, 474-489, 1973. https://doi.org/­10.1063/1.1694739.
  9. Atzeni, S. and Meyer-ter-Vehn, J., “The Physics of Inertial Fusion”, Oxford University Press, 77-78, 2004.
  10. Zylstra, A.B. and Hurricane, O.A., “On alpha-particle transport in inertial fusion”, Physics of Plasmas, 26(6), 062701(8pp), 2019. https://doi.org/10.1063/1.5101074.
  11. Maynard, G. and Deutsch, C., “Energy loss and straggling of ions with any velocity in dense plasmas at any temperature”, Physical Review A, 26(1), 665-668, 1982. https://doi.org/10.1103/PhysRevA.26.665.
  12. Li, C.K. and Petrasso, R.D., “Charged particle stopping powers in inertial confinement fusion plasmas”, Physical review letters, 70(20), 3059-3062, 1993. https://doi.org/10.1103/PhysRevLett.70.3059.
  13. Singleton, R.L., “Charged particle stopping power effects on ignition: Some results from an exact calculation”, Physics of Plasmas, 15(5), 056302 (9pp), 2008. https://doi.org/10.1063/1.2840134.
  14. Zylstra, A.B., Rinderknecht, H.G., Frenje, J.A., Li, C.K. and Petrasso, R.D., “Modified parameterization of the Li-Petrasso charged-particle stopping power theory”, Physics of Plasmas, 26(12), 122703(8pp), 2019. https://doi.org/10.1063/1.5114637.
  15. Li, C.K. and Petrasso, R.D., “Fokker-Planck equation for moderately coupled plasmas”, Physical review letters, 70(20), 3063-3066, 1993. https://doi.org/10.1103/PhysRevLett.70.3063.
  16. Ghosh, K. and Menon, S.V.G., “Energy deposition of charged particles and neutrons in an inertial confinement fusion plasma”, Nuclear fusion, 47(9), 1176-1183, 2007. https://doi.org/10.1088/0029-5515/47/9/014.
  17. Temporal, M., Canaud, B., Cayzac, W., Ramis, R. and Singleton, R.L., “Effects of alpha stopping power modelling on the ignition threshold in a directly-driven inertial confinement fusion capsule”, The European Physical Journal D, 71, 1-5, 2017. https://doi.org/10.1140/epjd/e2017-80126-6.
  18. Pasley, J., “Thermonuclear ignition calculations in contaminated DT fuel at high densities”, Plasma Physics and Control Fusion, 53(6), 065013(10pp), 2011. https://doi.org/10.1088/0741-3335/53/6/065013.
  19. Ma, T., Patel, P.K., Izumi, N., Springer, P.T., Key, M.H., Atherton, L.J., Benedetti, L.R., Bradley, D.K., Callahan, D.A., Celliers, P.M. and Cerjan, C.J., “Onset of Hydrodynamic mix in high-velocity, highly compressed inertial confinement fusion implosions”, Physical Review Letter, 111(8), 085004(5pp), 2013. https://doi.org/10.1103/PhysRevLett.111.085004.
  20. Caruso, A. and Strangio, C., “Ignition thresholds for deuterium-tritium mixtures contaminated by high-Z material in cone-focused fast ignition”, Journal of Experimental and Theoretical Physics, 97, 948-957, 2003. https://doi.org/10.1134/1.1633950.
  21. Roth, M., Cowan, T.E., Key, M.H., Hatchett, S.P., Brown, C., Fountain, W., Johnson, J., Pennington, D.M., Snavely, R.A., Wilks, S.C. and Yasuike, K., “Fast Ignition by Intense Laser-Accelerated Proton Beams”, Physical Review Letter, 86(3), 436-439, 2001. https://doi.org/10.1103/PhysRevLett.86.436.
  22. Berzak Hopkins, L., Divol, L., Weber, C., Le Pape, S., Meezan, N.B., Ross, J.S., Tommasini, R., Khan, S., Ho, D.D., Biener, J. and Dewald, E., “Increasing stagnation pressure and thermonuclear performance of inertial confinement fusion capsules by the introduction of a high-Z dopant”, Physics of Plasmas, 25(8), 080706(7pp), 2018. https://doi.org/10.1063/1.5033459.
  23. Mehdizadeh, F. and Khoshbinfar, S., “Criteria for Permissible Parameters of Hot Spot Ignition in Ion-doped Deuterium-Tritium Fuel”, Iranian Journal of Applied Physics, 13, 97-124, 2023. (In Persian) https://doi.org/10.22051/ijap.2023.42546.1310.
  24. Fortov, V.E., Hoffmann, D.H. and Sharkov, B.Y., “Intense ion beams for generating extreme states of matter”, Physics-Uspekh, 51(2), 109-131, 2008. https://doi.org/10.1070/pu2008v051n02abeh006420.
  25. Betti, R., Christopherson, A.R., Spears, B.K., Nora, R., Bose, A., Howard, J., Woo, K.M., Edwards, M.J. and Sanz, J., “Alpha Heating and Burning Plasmas in Inertial Confinement Fusion”, Physical Review Letter, 114(25), 255003(6pp), 2015. https://doi.org/10.1103/PhysRevLett.114.255003.
  26. Li, K. and Lan, K., “Escape of α-particle from hot-spot for inertial confinement fusion”, Physics of Plasmas, 26(12), 122701(9pp), 2019. https://doi.org/10.1063/1.5126377.
  27. Regan, S.P., Epstein, R., Hammel, B.A., Suter, L.J., Ralph, J., Scott, H., Barrios, M.A., Bradley, D.K., Callahan, D.A., Cerjan, C. and Collins, G.W., “Hot-spot mix in ignition-scale implosions on the NIF”, Physics of Plasmas, 19, 056307(9pp), 2012. https://doi.org/10.1063/1.3694057.