مقالۀ پژوهشی: طراحی سامانه چارک موجی آکرومات پهن باند در ناحیه مرئی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد، گروه فیزیک، مجتمع دانشگاهی علوم کاربردی نوین، دانشگاه صنعتی مالک اشتر، شاهین‌شهر، ایران

2 دانش‌آموختۀ کارشناسی ارشد، گروه فیزیک، مجتمع دانشگاهی علوم کاربردی نوین، دانشگاه صنعتی مالک اشتر، شاهین‌شهر، ایران

چکیده

تأخیر فاز در تیغه‌های‌موج بسیار به طول موج نور تابشی وابسته است. بنابراین هر تیغه موج تنها در یک طول موج ویژه می‌تواند تأخیر فاز مورد نظر را به وجود آورد. هدف از این پژوهش مطالعه و طراحی سامانه‌های چارک موجی آکرومات است تا بتواند در سراسر ناحیه طیفی مرئی تأخیر فاز 90 درجه ایجاد کند. با استفاده از ترکیب چند تیغه‌موج، می‌توان این سامانه ‌آکرومات را طراحی کرد. این کار با استفاده از دو، سه و چهار تیغه‌موج مورد بررسی قرار گرفته است. این طراحی بر اساس یک تابع شایستگی که آن را درجه آکرومات‌شدگی می‌نامند، بهینه‌سازی شده است. درجه آکرومات‌شدگی اختلاف بین تأخیر فاز بدست آمده و تأخیر فاز مورد نظر را محاسبه می‌کند که باید در بهینه‌سازی کمینه شود. در این پژوهش از بلورهای دوشکستی از جنس‌های کوارتز، کلسیت و سافایر استفاده شد. ضخامت، زوایای بین محورهای تند تیغه‌ها و نیز درجه آکرومات‌شدگی با استفاده‌ از الگوریتم‌ شبه‌نیوتن برای ناحیه طیفی 4/0-7/0 میکرومتر  بدست آمد. نتایج این پژوهش با کار دیگران مقایسه و نشان داده می‌شود که نتایج بدست آمده در ناحیه طول موجی 4/0-7/0  میکرومتر  بهتر شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Research Paper: Designing a Broadband Achromatic Quarter Wave System in the Visible Region

نویسندگان [English]

  • Masoud Kavosh Tehrani 1
  • Mohammad Reza Nejat 2
1 Professor, Department of Physics, University Complex of Modern Applied Sciences, Malek Ashtar University of Technology, Shahinshahr, Iran
2 M. Sc. Graduated, Department of Physics, University Complex of Modern Applied Sciences, Malek Ashtar University of Technology, Shahinshahr, Iran
چکیده [English]

The phase delay in wave plates is wavelength- dependent, producing the desired delay only for specific wavelengths of light. This study aims to design achromatic quarter- wave systems that produce a 90-degree phase delay across the entire visible spectrum. It is possible to create an achromat system by combining multiple wave plates. This work has been investigated using two, three, and four- wave plates. This design has been optimized using a merit function known as the degree of achromatization. The degree of achromatization calculates the difference between the obtained and desired phase delays, which should be minimized in the optimization. In this research, birefringent crystals of quartz, calcite, and sapphire have been used. And the thickness, angles between the sharp axes of the plates and the degree of achromatization were obtained using the Quasi-Newton method for the spectral region of 400-700 nm. The results of this research are compared with the work of others and show that the results obtained in the wavelength region of 400-700 nm are better.

کلیدواژه‌ها [English]

  • Quarter-wave Blade
  • Birefringent Crystals
  • Achromat System
  • Quasi- newton Method
[1] Li, L. and Escuti, M.J., "Super achromatic wide-angle quarter-wave plates using multi-twist retarders", Optics Express 29(5), 7464-7478, 2021. https://doi.org/10.1364/OE.418197
[2] Primerov, N., Dahdah, J., Gloor, S., von Niederhäusern, T., Matuschek, N., Castiglia, A., Malinverni, M., Mounir, C., Rossetti, M., Duelk, M. and Vélez, C., "A compact red-green-blue superluminescent diode module: A novel light source for AR microdisplays", In Digital Optical Technologies 2019, 11062 (55-64), SPIE, 2019. https://doi.org/10.1117/12.2527626
[3] Ishiguro, M., Ohmuro, K., Saitoh, Y., Takahashi, Y., Watanabe, J., Arai, T., Ito, Y. and Mihayashi, K., “A novel quarter-wave retardation film for improving viewing angle properties in time-sequential stereoscopic 3D-LCDs”, Journal of the Society for Information Display 20(11), 598-603, 2012. https://doi.org/10.1002/jsid.123
[4] Bos, P.J., Tektronix Inc, “Stereoscopic imaging system with passive viewing apparatus”, U.S. Patent 4,719,507, issued January 12, 1988.
[5] Geng, Y., Gollier, J., Wheelwright, B., Peng, F., Sulai, Y., Lewis, B., Chan, N., Lam, W.S.T., Fix, A., Lanman, D. and Fu, Y., “Viewing optics for immersive near-eye displays: pupil swim/size and weight/stray light, Digital Optics for Immersive Displays”, In Digital Optics for Immersive Displays, 10676, 19-35. SPIE, 2018. https://doi.org/10.1117/12.2307671
[6] Maimone, A. and Wang, J., “Holographic optics for thin and lightweight virtual reality”, ACM Transactions on Graphics (TOG) 39(4), 67-1, 2020. https://doi.org/10.1145/3386569.3392416
[7] Wong, T.L., Yun, Z., Ambur, G. and Etter, J., “Folded optics with birefringent reflective polarizers”, In Digital Optical Technologies 2017, 10335, 84-90, 2017. https://doi.org/10.1117/12.2270266
[8] Xiang, X., Kim, J. and Escuti, M.J., “Bragg polarization gratings for wide angular bandwidth and high efficiency at steep deflection angles”, Scientific Reports 8(1), 7202, 2018. https://doi.org/10.1038/s41598-018-25535-0
[9] Lee, Y.H., Yin, K. and Wu, S.T., “Reflective polarization volume gratings for high efficiency waveguide-coupling augmented reality displays”, Optics Express 25(22), 27008-27014, 2017. https://doi.org/10.1364/OE.25.027008
[10] Wang, Y., Liu, Y., Li, J., Liu, C., Yu, Z., Ye, H. and Yu, L., “Broadband Ultrathin Transmission Quarter Waveplate with Rectangular Hole Array Based on Plasmonic Resonances”, Nanoscale Research Letters 14, 1-8, 2019. https://doi.org/10.1186/s11671-019-3200-y
[11] Yue, S., Liu, Y., Wang, R., Hou, Y., Shi, H., Feng, Y., Wen, Z. and Zhang, Z., "All-silicon polarization-independent broadband achromatic metalens designed for the mid-wave and long-wave infrared", Optics Express 31(26), 44340-44352, 2023. https://doi.org/10.1364/OE.506471
[12] Gevorgyan, H.L., Rangelov, A.A. and Vitanov, N.V., “Broadband composite nonreciprocal polarization wave plates and optical isolators”, Optics Communications 549, 129884, 2023. https://doi.org/10.1016/j.optcom.2023.129884
[13] Pancharatnam, S., “Achromatic combinations of birefringent plates: Part II. An achromatic quarter-wave plate”, In Proceedings of the Indian Academy of Sciences-Section A, 41(4), 137-144, 1955. https://doi.org/10.1007/BF03047098
[14] Hariharan, P. and Malacara, D., “A simple achromatic half-wave retarder, Journal of Modern Optics”, Journal of Modern Optics 41(1), 15-18, 1994. https://doi.org/10.1080/09500349414550041
[15] Hariharan, P., “Achromatic and apochromatic halfwave and quarterwave retarders”, Optical Engineering 35(11), 3335-3337, 1996. https://doi.org/10.1117/1.601074
[16] Masson, J.B. and Gallot, G., “Terahertz achromatic quarter-wave plate”, Optics letters 31(2), 265-267, 2006. https://doi.org/10.1364/OL.31.000265
[17] Ma, J., Wang, J.S., Denker, C. and Wang, H.M., “Optical design of multilayer achromatic waveplate by simulated annealing algorithm”, Chinese Journal of Astronomy and Astrophysics 8(3),349, 2008. https://doi.org/10.1088/1009-9271/8/3/12
[18] Saha, A., Bhattacharya, K. and Chakraborty, A.K., “New achromatic quarter-wave combination of birefringent plates”, Optical Engineering 51(1), 013001-013001, 2012. https://doi.org/10.1117/1.OE.51.1.013001
[19] Herrera-Fernandez, J.M., Vilas, J.L., Sanchez-Brea, L.M. and Bernabeu, E., “Design of super achromatic quarter-wave retarders in a broad spectral range”, Applied optics 54(33), 9758-9762, 2015. https://doi.org/10.1364/AO.54.009758
[20] Vilas, J.L. and Lazarova-Lazarova, A., “A simple analytical method to obtain achromatic waveplate retarders”, Journal of Optics 19(4), 045701, 2017. https://doi.org/10.1088/2040-8986/aa5dfe
[21] De, S. and Mukhopadhyay, N., “An achromatic quarter-wave phase retarder operating in near-infrared (NIR) region”, Annals of the Faculty of Engineering Hunedoara 17(3), 65-67, 2019.
[22] Ou, M., Liu, L., Liu, Y., Lan, L., Xie, S. and Shi, X., “Optimal design of composite achromatic wave plate based on the improvement with initial point selection of intelligent algorithm”, Optik 225, 165722, 2021. https://doi.org/10.1016/j.ijleo.2020.165722
[23] Chen, X., Lu, W.G., Tang, J., Zhang, Y., Wang, Y., Scholes, G.D. and Zhong, H.,  “Solution-processed inorganic perovskite crystals as achromatic quarter-wave plates”,  Nature Photonics 15(11), 813-816, 2021. https://doi.org/10.1038/s41566-021-00865-0
[24] Gevorgyan, H.L., Rangelov, A.A. and Vitanov, N.V.,  “Broadband composite nonreciprocal polarization wave plates and optical isolators”, Optics Communications 549, 129884, 2023. https://doi.org/10.1016/j.optcom.2023.129884
[25] Ghosh, G., “Handbook of optical constants of solids: Handbook of thermo-optic coefficients of optical materials with applications”, Academic Press, 1998.