مقالۀ پژوهشی: ساخت هدف تیتانیومی بر زیرلایه مسی به منظورتولید نوترون در شتابگرالکتروستاتیک ES-150

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، پژوهشکده فیزیک و شتابگرها، پژوهشگاه علوم و فنون هسته‌ای، تهران، ایران.

2 مربی، پژوهشکده فیزیک و شتابگرها، پژوهشگاه علوم و فنون هسته‌ای، تهران، ایران

3 استادیار، پژوهشکده فیزیک و شتابگرها، پژوهشگاه علوم و فنون هسته‌ای، تهران، ایران

چکیده

در مقاله حاضر، به ساخت و مشخصه‏یابی هدف تیتانیومی بر زیرلایه مس به‎منظور تولید ذرات نوترون در شتابگرالکتروستاتیک ES-150 پرداخته شده است. مس، به‏دلیل رسانایی حرارتی بالا و تیتانیوم بهدلیل ضریب جذب بالای هیدروژن بهترتیب به‏عنوان زیرلایه و ماده هدف انتخاب شدند. به این منظور لایه‎نازکی از فلز تیتانیوم با روش کندوپاش پرتو یونی بر زیرلایه مسی انباشت شد. ساختار بلوری تشکیلشده در نمونه‌ها به کمک طیف‌سنجی پراش پرتو ایکس(XRD) ، ریختشناسی سطح به کمک میکروسکوپ الکترونی روبشی(SEM)  و توزیع‌وترکیب عناصر موجود در نمونهها نیز با استفاده از طیفسنجی پراش انرژی پرتو ایکس (EDX) بررسی شده‌ است. طیف‌سنجی XRD قلّه‌های مختلف تیتانیوم با جهت‎گیری غالب Ti(002) را در زاویه o42/38 برای لایه رسوب‌شده نشان می‌دهد. تصاویر SEM، لایهای با ساختار یکنواخت با توزیع منظم دانهها و بدون نقص را نشان می‌دهد و نتیجه بررسی EDX نیز شامل عناصر تیتانیوم و مس میباشد. مشخصــه‏یابی عنصری با روش‌های مبتنی بر آنالیز با باریکه یونی نشان می‌دهد که نمونه دارای یک زیرلایه مسی ضخیم و لایه تیتانیوم با ضخامت µm 19/0 ± 90/1 است. میزان شار نوترونی مربوط به اهداف ساخته‌شده در شتابگر الکتروستاتیک  KeV150، مطالعه و بهره نوترونی در راستای محور باریکه اندازهگیری شد. بیشینه بهره نوترونی از مرتبه n/s 107 بدست آمد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

research Paper: Fabrication of Titanium Target on Copper Substrate for Neutron Production in ES-150 Electrostatic Accelerator

نویسندگان [English]

  • Alireza Grayeli 1
  • Hossein Ghods 2
  • Maryam Karimi 3
  • Hossein Rafi-kheiri 3
1 Assistant Professor, Physics and Accelerators Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
2 Instructor, Physics and Accelerators Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
3 Assistant Professor, Physics and Accelerators Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
چکیده [English]

This article presents the fabrication and characterization of a titanium target deposited on a copper substrate, designed for generating neutron particles in the ES-150 electrostatic accelerator. The selection of copper as the substrate and titanium as the target material was based on their respective properties: copper's exceptional thermal conductivity and titanium's high hydrogen absorption coefficient. A titanium thin film was deposited onto the copper substrate using ion beam sputtering. The resulting crystal structure, surface morphology, and elemental composition of the samples were analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray spectrophotometry (EDX), respectively. X-ray diffraction (XRD) analysis revealed distinct titanium peaks, primarily oriented along the Ti (002) plane at an angle of 38.42o. The scanning electron microscopy (SEM) results indicate a uniform film with a regular grain distribution and no visible defects. Energy Dispersive X-ray analysis (EDX) further confirmed the presence of titanium and copper elements in the target. Ion beam analysis-based elemental characterization revealed a thick copper substrate and a titanium layer, which was 1.90 ± 0.19 µm thick. The neutron flux produced by the targets in the 150 KeV electrostatic accelerator was investigated, and the neutron yield was measured along the beam axis. A maximum neutron yield of 107 n/s was achieved.

کلیدواژه‌ها [English]

  • Titanium Film
  • Target
  • Accelerator
  • Neutron
[1] Leung, K.N., "New compact neutron generator system for multiple applications", Nuclear Technology 206(10), 1607-1614, 2020. https://doi.org/10.1080/00295450.2020.1719800
[2] Wu, Y., "Development of high intensity D–T fusion neutron generator HINEG", International Journal of Energy Research 42(1), 68-72, 2018. https://doi.org/10.1002/er.3572
[3] Ludewigt, B.A., Wells, R.P. and Reijonen, J., "High-yield D–T neutron generator", Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 261(1-2), 830-834, 2007. https://doi.org/10.1016/j.nimb.2007.04.246
[4] Metwally, W.A., Adel, Y., Dalah, E.Z. and Al-Omari, H., "Utilizing neutron generators in boron neutron capture therapy", Applied Radiation and Isotopes 174, 109742, 2021. https://doi.org/10.1016/j.apradiso.2021.109742
[5] Miceli, A., Festa, G., Gorini, G., Senesi, R. and Andreani, C., "Pulsed neutron gamma-ray logging in archaeological site survey", Measurement Science and Technology 24(12), 125903, 2013.  https://doi.org/10.1088/0957-0233/24/12/125903
[6] Xu, X., Chang, Y., Tang, W., Sun, Y., Lu, J., Zhao, L. and Li, X., "Measurement of neutron yield and angular distribution for DT neutron generator by neutron activation analysis method", Applied Radiation and Isotopes 156, 108971, 2020. https://doi.org/10.1016/j.apradiso.2019.108971
[7] Das, B.K., Das, R., Verma, R. and Sharma, A., "Characterization of deuteriated titanium thin film by residual gas analyzer", Vacuum 196, 110724, 2022. https://doi.org/10.1016/j.vacuum.2021.110724
[8] Liu, J., Lu, J., Xu, X., Li, C., Wang, Y. and He, H., "The influence of target film material and coating on neutron yield and sputtering yield", Materials Research Express 9(1), 015503, 2022. https://doi.org/10.1088/2053-1591/ac38dd
[9] Mehrabi, M., Vosoughi, S., Salek, N. and Ghapanvari, M., "Investigation of geometric effects on fast neutron radiography using IECF", Annals of Nuclear Energy 181, 109547, 2023. https://doi.org/10.1016/j.anucene.2022.109547.
[10] Rajput, M., Swami, H.L., Vala, S., Abhangi, M., Kumar, R. and Kumar, R., "Tritium-titanium target degradation due to deuterium irradiation for DT neutron production", Nuclear Fusion 63(6), 066033, 2023. https://doi.org/10.1088/1741-4326/accd80
[11] Kargaryan, A., Ghapanvari, M., Sedaghat, M., Aslezaeem, A. and Bagheri, A., "Design and construction of a solid target with a cooling system to investigate the surface fusion phenomenon", Journal of Nuclear Science, Engineering and Technology (JONSAT) 43(3), 113-123, 2022. https://doi.org/10.24200/nst.2022.1453
[12] Bystritsky, V.M., Dudkin, G.N., Filipowicz, M., Tuleushev, Y.Z. and Zhakanbaev, E.A., "Targets of deuterides TiD2, ZrD2, NbD, and CrD2 with different structures used in experiments on the study of pd and dd reactions at astrophysical energies", Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 810, 80-85, 2016. https://doi.org/10.1016/j.nima.2015.12.006
[13] Bergaoui, K., Reguigui, N., Gary, C.K., Brown, C., Cremer, J.T., Vainionpaa, J.H. and Piestrup, M.A., "Development of a new deuterium–deuterium (D–D) neutron generator for prompt gamma-ray neutron activation analysis", Applied Radiation and Isotopes 94, 319-327, 2014. https://doi.org/10.1016/j.apradiso.2014.09.004
[14] Tayyebi, P. and Davani, F.A., "Design and Construction of Deuterium Target for Fast neutron Production", IEEE NPSS Toronto Proceedings (2010).
[15] Seyfi, S., Rahmani, F., Ghaasemi, F., Tavakkoli, H., "Optimum photoneutron target design for 10 MeV linear accelerator for the purpose of radiotherapy and radiography", Proceeding of the Annual Physics Conference of Iran , Birjand University, Tehran, 26-29 August, 2013. (in Persian)
[16] Bystritsky, V.M., Bystritskii, V.M., Dudkin, G.N., Filipowicz, M., Gazi, S., Huran, J., Mesyats, G.A., Nechaev, B.A., Padalko, V.N., Parzhitskii, S.S. and Pen’kov, F.M., "Effect of the crystal structure of a deuterated target on the yield of neutrons in the dd reaction at ultralow energies", JETP letters 99, 497-502, 2014. https://doi.org/10.1134/S0021364014090033
[17] Guo, W.T., Zhao, S.J., Jing, S.W. and Zheng, Y.L., "Effect of target film materials on neutron yield of neutron tube with drive-in target", Radiation Physics and Chemistry 182, 109358, 2021. https://doi.org/10.1016/j.radphyschem.2021.109358
[18] Guo, W.T., Zhao, S.J., Yu, Z.T., Shi, G.Y. and Jing, S.W., "Effect of target material on neutron output and sputtering yield of DD neutron tube", Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 473, 48-54, 2020. https://doi.org/10.1016/j.nimb.2020.04.017
[19] Demin, A.S., Morozov, E.V., Maslyaev, S.A., Pimenov, V.N., Gribkov, V.A., Demina, E.V., Sasinovskaya, I.P., Sirotinkin, V.P., Sprygin, U.S., Bondarenko, G.G. and Tikhonov, A.N., "The influence of a powerful stream of deuterium ions and deuterium plasma on the structural state of the surface layer of titanium", Inorganic Materials: Applied Research 8, 412-418, 2017. https://doi.org/10.1134/S2075113317030078.
[20] Reichenbach, B., Johnson, B.B. and Schwoebel, P.R., "The field evaporation of deuterated titanium as a neutron generator ion source", Journal of Applied Physics 108(9), 2010. https://doi.org/10.1063/1.3499697
[21] Bystritsky, V.M., Dudkin, G.N., Filipowicz, M., Tuleushev, Y.Z. and Zhakanbaev, E.A., "Targets of deuterides TiD2, ZrD2, NbD, and CrD2 with different structures used in experiments on the study of pd and dd reactions at astrophysical energies", Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 810, 80-85, 2016. https://doi.org/10.1016/j.nima.2015.12.006
[22] Hong, Z., Wang, L., Feng, Y., Gong, B., Yang, J. and Wang, X., "Study on deuterium permeation behavior of palladium films prepared by magnetron sputtering method", Coatings 12(7), 978, 2022. https://doi.org/10.3390/coatings12070978.
[23] Liu, J., Lu, J., Xu, X., Li, C., Wang, Y., He, H., "The influence of target film material and coating on neutron yield and sputtering yield", Mater. Res. Express 9, 015503-015512, 2022. https://doi.org/10.1016/j.nimb.2020.04.017
[24] Karimi, M., Grayeli, A.R., Larijani, M.M., "Design, fabrication and characterization of titanium thin film applicable in deuterium target", 29th Iranian nuclear Conference, Tehran, 26 Feb, 2023.
[25] Tesmer, J. R., Nastasi, M., "Handbook of Modern Ion Beam Materials Analysis", Mater. Res. Society, New York, 2, 2009.
[26] Mayer, M., "SIMNRA, a simulation program for the analysis of NRA, RBS and ERDA", In AIP conference proceedings 475(1), 541-544, American Institute of Physics, 1999. https://doi.org/10.1063/1.59188
[27] https://www-nds.iaea.org/exfor/ibandl.htm. Available in 8 June 2024