مطالعه ابتدا به ساکن ویژگی‌های ساختاری، الکترونی و اپتیکی نانوصفحات اکسیدروی در حضور ناخالصی کادمیوم

نوع مقاله : مقاله پژوهشی

نویسنده

استادیار، گروه فیزیک، دانشکده علوم پایه دانشگاه آیت اله بروجردی (ره)، بروجرد، لرستان، ایران

چکیده

نانوصفحه‌های اکسید روی (ZnO) به‌عنوان یکی از مواد نیمه‌رسانا با ویژگی‌های منحصر به فرد، در سال‌های کنونی توجه بسیاری را در حوزه‌های مختلف علمی و صنعتی به خود جلب کرده‌اند. این ماده به دلیل شکاف انرژی نسبتاً زیاد (حدود ۳/۳ الکترون‌ولت) و توانایی جذب نور در ناحیه فرابنفش، در دیودهای نوری، حسگرها و سلول‌های خورشیدی به صورت گسترده‌ای مورد استفاده قرار می‌گیرد. در این مطالعه، طیف گسترده‌ای از ویژگی‌های ساختاری، الکترونی و اپتیکی این ماده در چارچوب نظریه تابعی چگالی (DFT) انجام شده است. نتایج نشان می‌دهد که حضور ناخالصی کادمیوم در نانوصفحات اکسید روی تأثیرات قابل‌توجهی بر ویژگی‌های ساختاری، الکترونی و اپتیکی این مواد دارد. افزودن کادمیوم به ساختار اکسید روی می‌تواند منجر به تغییرات قابل توجهی در شبکه بلوری و بهبود پایداری ساختاری شود. این تغییرات می‌توانند به کاهش نقص‌های بلوری و افزایش نسبت سطح به حجم منجر شوند، که به نوبه خود تأثیر مثبتی بر روی ویژگی‌های نوری و الکترونی نانوصفحات دارد.  نتایج این پژوهش نشان می­دهد که ناخالصی کادمیوم می‌تواند موجب کاهش شکاف انرژی و افزایش میزان گشتاور مغناطیسی کل ماده شود. این تغییرات می‌تواند حالت‌های الکترونی جدیدی در ساختار نانوصفحه ایجاد کند که به بهبود ویژگی‌های نوری، از جمله جذب و گسیل نور برای کاربرد در ابزارهای فوتوولتائیک کمک می‌کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Structural, Electronic, and Optical Properties of Zinc Oxide Nanosheets in the Presence of Cadmium Impurities

نویسنده [English]

  • Razieh Beiranvand
Assistant Professor, Department of Basic Science, ayatollah Boroujerdi University, Boroujerd, Lorestan, Iran.
چکیده [English]

Zinc oxide (ZnO) nanosheets, recognized as one of the semiconductor materials with unique characteristics, have garnered significant attention in various scientific and industrial fields in recent years. Due to their relatively high band gap (approximately 3.3 electron volts) and ability to absorb light in the ultraviolet region, this material is widely used in light-emitting diodes, sensors, and solar cells. This study examines a comprehensive range of structural, electronic, and optical properties of this material within the framework of density functional theory (DFT). The results indicate that the presence of cadmium impurities in zinc oxide nanosheets significantly affects the structural, electronic, and optical properties of these materials. Incorporating cadmium into the zinc oxide structure can lead to notable changes in the crystal lattice and enhance structural stability. These changes may result in a reduction of crystal defects and an increase in the surface-to-volume ratio, which in turn positively impacts the optical and electronic properties of the nanosheets. Furthermore, cadmium impurities can lead to a reduction in the band gap and an increase in the overall magnetic moment of the material. These modifications may create new electronic states within the nanosheet structure, contributing to the enhancement of optical properties, including light absorption and emission, and improving optical characteristics for applications in photovoltaic devices.

کلیدواژه‌ها [English]

  • Density Functional Theory (DFT)
  • Structural Properties
  • Electro-optical Properties
  • ZnO Nanosheet
[1] Shanmugam, N., Suthakaran, S., Kannadasan, N. and Sathishkumar, K., "Synthesis and characterization of Te doped ZnO nanosheets for photocatalytic application", Journal of Heterocyclics, 105(6736182), 15-20, 2015. DOI: https://doi.org/10.1016/j.jhetchem.2015.05.021
[2] Yang, J., Wang, Y., Kong, J., Jia, H., and Wang, Z., " Synthesis of ZnO nanosheets via electrodeposition method and their optical properties, growth mechanism", Optical Materials, 46, 179-185, 2015. DOI: https://doi.org/10.1016/j.optmat.2015.04.025
[3] Al-Hazmi, F., Aal, N.A., Al-Ghamdi, A.A., Alnowaiser, F., Gafer, Z.H., Al-Sehemi, A.G., El-Tantawy, F. and Yakuphanoglu, F., "Facile green synthesis, optical and photocatalytic properties of zinc oxide nanosheets via microwave assisted hydrothermal technique", Journal of Electroceramics, 31, 324-330, 2013. DOI: https://doi.org/10.1007/s10832-013-9772-9
[4] Othman, A., Osman, M., Ibrahim, E., and Ali, M. A., "Sonochemically synthesized ZnO nanosheets and nanorods: Annealing temperature effects on the structure, and optical properties", Ceramics International, 43, 527-533, 2017. DOI: https://doi.org/10.1016/j.ceramint.2016.09.183
[5] Xie, J., Wang, H., Duan, M., and Zhang, L., "Synthesis and photocatalysis properties of ZnO structures with different morphologies via hydrothermal method", Applied Surface Science, 257, 6358-6363, 2011. DOI: https://doi.org/10.1016/j.apsusc.2011.01.045
[6] Jiang, J., Huang, Z., Tan, S., Li, Y., Wang, G., and Tan, X., "Preparation of ZnO nanosheets by a novel microemulsion-based hydrothermal method", Materials Chemistry and Physics, 132, 735-739, 2012. DOI: https://doi.org/10.1016/j.matchemphys.2012.01.025
[7] Tsai, J.-K., Meen, T.-H., Wu, T.-C., Lai, Y.-D., and He, Y.-K., "Morphology and optical properties of ZnO microrods grown by high-temperature hydrothermal method", Microelectronic Engineering, 148, 55-58, 2015. DOI:  https://doi.org/10.1016/j.mee.2015.03.016
[8] Ibrahim, K. M., Saleh, W. R., and Al-Sammarraie, A. M., "Structural and optical properties of ZnO nanostructures synthesized by hydrothermal method at different conditions", Nano Hybrids and Composites, 35, 75-83, 2022. DOI: https://doi.org/10.1016/j.nanhyb.2022.03.005
[9] Agarwal, S., Jangir, L. K., Rathore, K. S., Kumar, M., and Awasthi, K., "Morphology-dependent structural and optical properties of ZnO nanostructures", Applied Physics A, 125, 553, 2019. DOI:  https://doi.org/10.1007/s00339-019-2971-x
[10] Chen, S., Liu, Y., Shao, C., Mu, R., Lu, Y., Zhang, J., Shen, D., and Fan, X., "Structural and optical properties of uniform ZnO nanosheets", 2005. DOI: https://doi.org/10.1007/s00339-005-3089-5
[11] Kang, Y., Yu, F., Zhang, L., Wang, W., Chen, L., and Li, Y., "Review of ZnO-based nanomaterials in gas sensors", Solid State Ionics, 360, 115544, 2021. DOI: https://doi.org/10.1016/j.ssi.2021.115544
[12] Supraja, P., Kumar, R. R., Mishra, S., Haranath, D., Sankar, P. R., Prakash, K., Jayarambabu, N., Rao, T. V., and Kumar, K. U., "A simple and low-cost triboelectric nanogenerator based on two dimensional ZnO nanosheets and its application in portable electronics", Sensors and Actuators A: Physical, 335, 113368, 2022. DOI: https://doi.org/10.1016/j.sna.2022.113368
[13] Chu, L., Xu, C., Zeng, W., Nie, C., and Hu, Y., "Fabrication and application of different nanostructured ZnO in ultraviolet photodetectors: A review", IEEE Sensors Journal, 22, 7451-7462, 2022. DOI: https://doi.org/10.1109/JSEN.2022.3149816
[14] Khun, K., Elhag, S., Ibupoto, Z. H., Khranovskyy, V., Nur, O., and Willander, M., "Supramolecules-assisted ZnO nanostructures growth and their UV photodetector application", Solid State Sciences, 41, 14-18, 2015. DOI: https://doi.org/10.1016/j.solidstatesciences.2014.11.004
[15] Theerthagiri, J., Salla, S., Senthil, R., Nithyadharseni, P., Madankumar, A., Arunachalam, P., Maiyalagan, T., and Kim, H.-S., "A review on ZnO nanostructured materials: Energy, environmental and biological applications", Nanotechnology, 30, 392001, 2019. DOI: https://doi.org/10.1088/1361-6528/ab5e1a
[16] Gupta, M. K., Lee, J.-H., Lee, K. Y., and Kim, S.-W., "Two-dimensional vanadium-doped ZnO nanosheet-based flexible direct current nanogenerator", ACS Nano, 7, 8932-8939, 2013. DOI: https://doi.org/10.1021/nn4027006
[17] Haq, B. U., AlFaify, S., Alrebdi, T. A., Ahmed, R., Al-Qaisi, S., Taib, M., Naz, G., and Zahra, S., "Investigations of optoelectronic properties of novel ZnO monolayers: A first-principles study", Materials Science and Engineering: B, 265, 115043, 2021. DOI: https://doi.org/10.1016/j.mseb.2020.115043
[18] Zheng, F.-b., Zhang, C.-w., Wang, P.-j., and Luan, H.-x., "Tuning the electronic and magnetic properties of carbon-doped ZnO nanosheets: First-principles prediction", Journal of Applied Physics, 111, 2012. DOI: https://doi.org/10.1063/1.4725511
[19] Zheng, F.-b., Zhang, C.-w., Wang, P.-j., and Luan, H.-x., "First-principles prediction of the electronic and magnetic properties of nitrogen-doped ZnO nanosheets", Solid State Communications, 152, 1199-1202, 2012. DOI: https://doi.org/10.1016/j.ssc.2012.02.020
[20] Wong, K. Mun, Alay-e-Abbas, S., Shaukat, A., Fang, Y., and Lei, Y., "First-principles investigation of the size-dependent structural stability and electronic properties of O-vacancies at the ZnO polar and non-polar surfaces", Journal of Applied Physics, 113, 2013. DOI: https://doi.org/10.1063/1.4794977
[21] Zheng, F.-B., Zhang, C.-W., Wang, P.-J., and Luan, H.-X., "The electronic and magnetic properties with intrinsic defects in ZnO nanosheets: First-principles prediction", Current Applied Physics, 13, 799-802, 2013. DOI: https://doi.org/10.1016/j.cap.2012.09.013
[22] Ozugurlu, E., "Cd-doped ZnO nanoparticles: An experimental and first-principles DFT studies", Journal of Alloys and Compounds, 861, 158620, 2021. DOI: https://doi.org/10.1016/j.jallcom.2020.158620
[23] Blaha, P., Schwarz, K., Madsen, G.K., Kvasnicka, D. and Luitz, J., "wien2k", An augmented plane wave+ local orbitals program for calculating crystal properties, 60(1), 2001. ISBN: 3-9501031-1-2
[24] Perdew, J. P., Burke, K., and Ernzerhof, M., "Generalized gradient approximation made simple", Physical Review Letters, 77, 3865, 1996. DOI: https://doi.org/10.1103/PhysRevLett.77.3865
[25] Özgür, Ü., Alivov, Y. I., Liu, C., Teke, A., Reshchikov, M. A., Doğan, S., Avrutin, V., Cho, S.-J., and Morkoç, H., "A comprehensive review of ZnO materials and devices", Journal of Applied Physics, 98(4), 2005. DOI: https://doi.org/10.1063/1.1948481
[26] Klingshirn, C., "ZnO: Material, physics and applications", ChemPhysChem, 8, 782-803, 2007. DOI: https://doi.org/10.1002/cphc.200700106
[27] Klingshirn, C., "ZnO: From basics towards applications", Physica Status Solidi (b), 244, 3027-3073, 2007. DOI: https://doi.org/10.1002/pssb.200645191
[28] Kochnev, N., Tkachenko, D., Kirsanov, D., Bobrysheva, N., Osmolowsky, M., Voznesenskiy, M., and Osmolovskaya, O., "Regulation and prediction of defect-related properties in ZnO nanosheets: Synthesis, morphological and structural parameters, DFT study and QSPR modelling", Applied Surface Science, 621, 156828, 2023. DOI: https://doi.org/10.1016/j.apsusc.2022.156828
[29] Gu, G., Xiang, G., Luo, J., Ren, H., Lan, M., He, D., and Zhang, X., "Magnetism in transition-metal-doped ZnO: A first-principles study", Journal of Applied Physics, 112, 2012. DOI: https://doi.org/10.1063/1.4742863
[30] Abdel-Baset, T., Fang, Y.-W., Anis, B., Duan, C.-G., and Abdel-Hafiez, M., "Structural and magnetic properties of transition-metal-doped Zn1−xFexO", Nanoscale Research Letters, 11, 1-12, 2016. DOI: https://doi.org/10.1186/s11671-016-1611-7
[31] Chen, L., Li, S., Cui, Y., Xiong, Z., Luo, H., and Gao, Y., "Manipulating the electronic and magnetic properties of ZnO monolayer by noble metal adsorption: A first-principles calculations", Applied Surface Science, 479, 440-448, 2019. DOI: https://doi.org/10.1016/j.apsusc.2019.02.236
[32] Coleman, V.A. and Jagadish, C., "Basic properties and applications of ZnO", In Zinc oxide bulk, thin films and nanostructures, pp. 1-20. Elsevier Science Ltd, 2006. DOI: https://doi.org/10.1016/B978-008044722-3/50001-4
[33] Ambrosch-Draxl, C., and Sofo, J. O., "Linear optical properties of solids within the full-potential linearized augmented planewave method", Computer Physics Communications, 175, 1-14, 2006. DOI: https://doi.org/10.1016/j.cpc.2005.07.010
[34] Zhang, X., Le, M.-Q., Zahhaf, O., Capsal, J.-F., Cottinet, P.-J., and Petit, L., "Enhancing dielectric and piezoelectric properties of micro-ZnO/PDMS composite-based dielectrophoresis", Materials & Design, 192, 108783, 2020. DOI: https://doi.org/10.1016/j.matdes.2020.108783