مقالۀ پژوهشی: سنتز نانوذرات و نانو ساختارهای آلومینیم هیدروکسید و بررسی خواص هم افزایی آن با نانوذرات نقره، در پوشش دهی چوب با هدف افزایش خاصیت ضد قارچی و ماندگاری بیشتر

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، گروه فیزیک، دانشگاه آزاد اسلامی، واحد تهران غرب، تهران، ایران

2 استادیار، گروه فیزیک ، دانشگاه آزاد اسلامی، واحد تهران غرب، تهران، ایران

3 مربی، گروه فیزیک، دانشکده علوم و فناوری‌های همگرا ، گروه فیزیک، دانشگاه آزاد اسلامی، واحد علوم وتحقیقات ، تهران، ایران

چکیده

در تحقیق حاضر، بررسی می­شود که چگونه سنتز نانوذرات و نانوساختارهای آلومینیوم هیدروکسید و نقره، به عنوان پوشش‌هایی بر روی سطح چوب، می‌تواند خواص ضد قارچی و ماندگاری بیشتر آن را افزایش دهد. برای سنتز، از روش ماکروویو استفاده شده است و سپس خواص پوشش‌های حاصل، از جمله خواص ضدباکتریایی و ضدآتش‌سوزی، با استفاده از تحلیل­های SEM، XRD، TGA، و آزمون‌های آتش‌سوزی UL-94 و ضریب حداقل اکسیژن مورد بررسی قرار گرفته است. نتایج پژوهش نشان می‌دهد که پوشش‌های دولایه با نقره و آلومینیوم هیدروکسید، به ترتیب، خواص ضد قارچی و ماندگاری بیشتر بهتری را نسبت به پوشش‌هایتک لایه دارند. همچنین، در آخرین نمونه که از هر دو نمک آلومینیوم نیترات و نقره نیترات استفاده شده است، همگرایی بین خواص ضد قارچی و ماندگاری بیشتر به‌خوبی مشاهده شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Research Paper: Synthesis of Aluminum Hydroxide Nanoparticles and Nanostructures and Investigation of Its Synergistic Properties with Silver Nanoparticles in Wood Coating to Increase Anti-Fungal Properties and Flame Retardancy

نویسندگان [English]

  • Amir Hoshang Ramezani 1
  • Zhaleh Ebrahiminejad 2
  • Mojghan Adnan 3
1 Associate Professor, Physics Department, West Tehran Branch, Islamic Azad University, Tehran, Iran
2 Assistant Professor, Physics Department, West Tehran Branch, Islamic Azad University, Tehran, Iran
3 Instructor, Faculty of Converging Sciences and Technologies, Science and Research Branch, Islamic Azad University, Tehran, Iran
چکیده [English]

This paper investigates how the synthesis of aluminum hydroxide, silver nanoparticles, and nanostructures, as coatings on wood surfaces, can enhance their antifungal and fire-retardant properties. The microwave method is employed for synthesis to investigate properties of the resulting coatings, including antibacterial and fire-retardant properties. They have been  examined using SEM, XRD, TGA analyses, fire tests such as UL-94 , and Limiting Oxygen Index (LOI). The results show that bilayer coatings with silver and aluminum hydroxide, respectively, have better antifungal and fire-retardant properties compared to single-layer coatings ones. Furthermore, in the another sample, where both aluminum nitrate and silver nitrate salts are used simultaneously, a good correlation between antifungal and fire-retardant properties has been observed. Overall, these findings contribute to a deeper understanding of the functional properties and potential applications of silver and aluminum hydroxide-coated wood surfaces in various fields such as antimicrobial coatings and environmental remediation.

کلیدواژه‌ها [English]

  • Nanoparticle Synthesis
  • Aluminum Hydroxide
  • Silver
  • Fire-retardant Properties
  • Antifungal Properties
  • Boverhof D. R., Bramante C. M., Butala J. H., Clancy S. F., Lafranconi M., West , Gordon S. C., Comparative assessment of nanomaterial definitions and safety evaluation considerations, Regul. Toxicol. Pharmacol.73,137–1502015 https://doi.org/10.1016/j.yrtph.2015.06.001. Epub 2015 Jun 23.
  • Capon A, Rolfe M, Gillespie J, Smith W., Is the risk from nanomaterials perceived as different from the risk of 'chemicals' by the Australian public?, Public Health Res Pract. 15;26(2):2621618, 2016, https://doi.org/10.17061/phrp2621618.
  • Carbon-Based Nanomaterials. Essentials in Nanoscience and Nanotechnology, Kumar N., Kumbhat S., John Wiley & Sons, Inc.: Hoboken, NJ, U.S.A., 189–236, 2016, https://doi.org/10.1002/9781119096122.
  • Gokarna A., Parize R., Kadiri H., Nomenyo K., Patriarche G., Miska P., Lerondel G., Highly crystalline urchin-like structures made of ultra-thin zinc oxide nanowires, RSC Adv. 4, 47234–47239, 2014, https://doi.org/10.1039/C4RA06327A.
  • Tiwari J. N., Tiwari R. N., Kim K. S., Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices, Prog. Mater. Sci. 57, 724–803, 2012, https://doi.org/10.1016/j.pmatsci.2011.08.003
  • Hochella M. F. Jr., Spencer M. G., Jones K. L., Nanotechnology: nature's gift or scientists' brainchild?, Environ. Sci.: Nano 2, 114–119, 2015, https://doi.org/10.1039/C4EN00145A.
  • Sharma V. K., Filip J., Zboril R., Varma R. S., Natural inorganic nanoparticles – formation, fate, and toxicity in the environment, Chem. Soc. Rev. 44, 8410–8423, 2015, https://doi.org/10.1039/C5CS00236B.
  • Walter P., Welcomme E., Hallégot P., Zaluzec N. J., Deeb C., Castaing J., Veyssière P., Bréniaux R., Lévêque J.-L., Tsoucaris G., Early use of PbS nanotechnology for an ancient hair dyeing formula, Nano Lett. 6, 2215–2219, 2006, https://doi.org/10.1021/nl061493u.
  • Al-Dabbous A. N., Kumar P., Evaluation of elemental concentrations of uranium, thorium and potassium in top soils from Kuwait, Environ. Sci. Technol. 48, 13634–136432014, https://doi.org/10.1021/es505175u
  • Durán N., Seabra A. B., de Lima R., Cytotoxicity and genotoxicity of biogenically synthesized silver nanoparticles. In Nanotoxicology, Springer: Berlin, Germany, 245–2632014, https://doi.org/10.1007/978-1-4614-8993-1_11.

[11] Taylor D. A., Dust in the wind, Environ. Health Perspect. 110, A80, 2002, https://doi.org/10.1289/ehp.110-a8.

[12] The nanoscience and technology of renewable biomaterials; Lucia, L. A.; Rojas, O., John Wiley & Sons, Inc.: Hoboken, NJ, U.S.A., 2009, https://doi.org/10.1002/9781444307474.ch3.

[13] Mohammadinejad R., Karimi S., Iravani S., Varma R. S., Plant-derived nanostructures: types and applications, Green Chem. 18, 20–52, 2016, https://doi.org/10.1039/C5GC01403D.

[14] Gorb E., Haas K., Henrich A., Enders S., Barbakadze N., Gorb S. J., Contribution of pitcher fragrance and fluid viscosity to high prey diversity in a Nepenthes carnivorous plant from borneo, Exp. Biol. 208, 4651–4662, 2005, https://doi.org/10.1007/s12038-008-0028-5.

[15] Bargel H.;, Koch K., Cerman Z., Neinhuis C., Structure-function relationships of the plant cuticle and cuticular waxes - a smart material?, Funct. Plant Biol. 33, 893–910, 2006, https://doi.org/10.1071/FP06139.

[16] Plant cuticles: an integrated functional approach,     Barnes J., Cardoso Velhena J.,  BIOS Scientific Publishers Ltd.: Oxford, United Kingdom, 1996.

[17] Pfündel E. E., Agati G., Cerovic G. Z., Optical properties of plant surfaces. In Biology of the plant cuticle; Reiderer, M.; Mueller, C., Eds.; Blackwell Publishing: Oxford, United Kingdom, 216–239, 2008.

[18] Barthlott W., Neinhuis C., Planta, Purity of the sacred lotus, or escape from contamination in biological surfaces, 202, 1–8, 1997, https://doi.org/10.1007/s004250050096.

[19] Sastry M., Ahmad A., Khan M. I., Kumar R., Biosynthesis of metal nanoparticles using fungi and actinomycete, Curr. Sci. 85, 162–170, 2003, http://www.ias.ac.in/currsci/jul252003/162.pdf.

[20] Mukherjee P., Senapati S., Mandal D., Ahmad A., Khan M. I., Kumar R., Sastry M., Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum, ChemBioChem , 3, 461–463, 2002, https://doi.org/ 10.1002/1439-7633(20020503)3:5.

[21] Ahmad A., Mukherjee P., Senapati S., Mandal D., Khan M. I., Kumar R., Sastry M., Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum, Colloids Surf. 28, 313–318B, 2003, https://doi.org/10.1016/S0927-7765(02)00174-1.

[22] Ahmad A., Mukherjee P., Mandal D., Senapati S., Khan M. I., Kumar R., Sastry M. J., Biosurfactants as green stabilizer for the biological synthesis of nanoparticles, Taylor & Francis Critical Reviews in Biotechnology, 31(4):354-64,2011 https://doi.org/10.3109/07388551.2010.539971.

[23] Bansal V., Rautaray D., Ahmad A., Sastry M. J., Biosynthesis of zirconiananoparticles using the fungus Fusarium oxysporum, Mater. Chem. 14, 3303–3305, 2004, https://doi.org/10.1039/B407904C.

[24] Dameron C. T., Reese R. N., Mehra R. K., Kortan A. R., Carroll P. J., Steigerwald M. L., Brus L. E., Winge D. R., Biosynthesis of cadmium sulphide quantum semiconductor crystallites, Int. J. Biol. Chem. 263, 12832–12835,1988, https://doi.org/10.1038/338596a0.

[25] Williams P., Keshavarz-Moore E., Dunnill P., Efficient production of microbially synthesized cadmium sulfide quantum semiconductor crystallites, Enzyme and Microbial Technology, 19(3), 208-213,1996, https://doi.org/10.1016/0141-0229(95)00233-2.

[26] Kowshik M., Vogel W., Urban J., Kulkarni S. K., Paknikar K. M., Microbial Synthesis of Semiconductor PbS Nanocrystallites, Adv. Mater. 14, 815–818, 2002, https://doi.org/10.1002/1521-4095(20020605)14:11.

[27] Kowshik M., Ashtaputre S., Kharrazi S., Vogel W., Urban J., Kulkarni S. K., Paknikar K. M., Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3, Nanotechnology , 14, 95–100, 2002, DOI 10.1088/0957-4484/14/1/321.

[28] Fricker M., Ågren J., Segerman B., Knutsson R., Ehling-Schulz M., Evaluation of Bacillus strains as model systems for the work on Bacillus anthracis spores, Int. J. Food Microbiol. 145, S129–S136, 2011, https://doi.org/10.1016/j.ijfoodmicro.2010.07.036.

[29] Lee S., Shin J. H., Choi, M. Y., Watching the growth of aluminum hydroxide nanoparticles from aluminum nanoparticles synthesized by pulsed laser ablation in aqueous surfactant solution, Journal of nanoparticle research, 15, 1-8. 2013, https://doi.org/10.1007/s11051-013-1473-0.

[30] Lozhkomoev A. S., Kazantsev S. O., Glazkova E. A., Bakina O. V., Kondranova A. M., Svarovskaya N. V., et.al.,  Synthesis, characterization and properties of porous micro/nanostructures obtained by oxidizing aluminum nanoparticles with water in the presence of glass fibers, Materials Research Express, 5(11), 115011. 2018, https://doi.org/ 10.1088/2053-1591/aadce6.

[31] Liu X., Niu, C., Zhen X., Wang J., Su, X, Novel approach for synthesis of boehmite nanostructures and their conversion to aluminum oxide nanostructures for remove Congo red, Journal of colloid and interface science, 452, 116-125, 2015, https://doi.org/10.1016/j.jcis.2015.04.037.

[32] Sui R., Lo J. M., Lavery C. B., Deering C. E., Wynnyk K. G., Chou N., Marriott R. A., Sol–Gel-Derived 2D Nanostructures of Aluminum Hydroxide Acetate: Toward the Understanding of Nanostructure Formation, The Journal of Physical Chemistry C, 122(9), 5141-5150, 2018, https://doi.org/10.1021/ACS.JPCC.7B12490.

[33] Park Y. K., Tadd E. H., Zubris M., Tannenbaum R., Size-controlled synthesis of alumina nanoparticles from aluminum alkoxides, Materials Research Bulletin, 40(9), 1506-1512, 2005, https://doi.org/10.1016/j.materresbull.2005.04.031.

[34] Kazantsev S. O., Lozhkomoev A. S., Glazkova E. A., Gotman I., Gutmanas E. Y., Lerner M. I., Psakhie, S. G., Preparation of aluminum hydroxide and oxide nanostructures with controllable morphology by wet oxidation of AlN/Al nanoparticles. Materials Research Bulletin, 104, 97-103. 2018, https://doi.org/10.1016/j.materresbull.2018.04.011.

[35] Lozhkomoev A. S., Glazkova E. A., Kazantsev S. O., Gorbikov I. A., Bakina, O. V., Svarovskaya, N. V., et.al., Formation of micro/nanostructured AlOOH hollow spheres from aluminum nanoparticles. Nanotechnologies in Russia, 10, 858-864. 2015, https://doi.org/10.1134/S1995078015060075.

[36] Chen B., Wang J. X., Wang D., Zeng X. F., Clarke S. M., Chen J. F., Synthesis of transparent dispersions of aluminium hydroxide nanoparticles, Nanotechnology, 29(30), 305605, 2018, https://doi.org/ 10.1088/1361-6528/aac371.

[38] Jian H., et.al.,, Research Progress on the Improvement of Flame Retardancy, Hydrophobicity, and Antibacterial Properties ofWood Surfaces, Polymers  15, 951, 2023, https://doi.org/10.3390/polym15040951.

[39] Lee Y. X., et.al, Flame-retardant coatings for wooden structures, Progress in Organic Coatings198, 108903,2025, 10.1016/j.porgcoat.2024.108903.

[40] Tabassum N., Khan F., Jeong G.J., Jo D.M, Kim Y.M., Silver nanoparticles synthesized from Pseudomonas aeruginosa pyoverdine: Antibiofilm and antivirulence agents, Biofilm 7, 100192, 2024, https://10.1016/j.bioflm.2024.100192.