خواص ساختاری والکترونی نانونوارهای گالیوم نیترید لبه زیگزاگ هیدروژنه با استفاده از نظریه تابعی چگالی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه فیزیک، دانشکده علوم پایه، دانشگاه رازی، کرمانشاه، ایران.

2 گروه فیزیک، دانشکده علوم، دانشگاه رازی، کرمانشاه، ایران

چکیده

در این پژوهش خواص ساختاری و الکترونی نانونوارهای گالیوم نیترید لبه زیگزاگ هیدروژنه با عرض‌های 19.2، 24.85، 30.49 و 36.14 آنگستروم که متناظر هستند با شماره‌های زنجیرۀ زیگزاگ 3، 5، 7 و 9 با استفاده از اصول اولیه و روش نظریۀ تابعی چگالی بررسی شده است. این بررسی‌ها با استفاده از امواج تختِ تقویت‌شدۀ خطی با پتانسیل کامل FP-LAPW و کاربرد تقریب شیبِ تعمیم‌یافته برای پتانسیل تبادل‌ـ‌همبستگی صورت گرفته است. چگالی حالت‌های کل و چگالی حالت‌های جزئی و چگالی ابر الکترونی رسم شده است. این محاسبات نشان می‌دهند که همۀ نانونوارهای مطالعه‌شده نیم‌رسانا هستند و نانونوارِ دارای عرض 3 شکاف انرژی 2.687 الکترون ولت، عرض 5 شکاف انرژی 2.304 الکترون ولت، عرض‌های 7 و9 به ترتیب شکاف انرژی 2.107 و2.008 الکترون ولت دارند و با افزایش عرض نوار، شکاف نواری کاهش می‌یابد. همچنین، نتایج نشان می‌دهند نانونوارهای گالیوم نیترید لبه زیگزاگ هیدروژنه با عرض‌های 3 ، 5، 7 و 9 غیرمغناطیسی هستند. چگالی حالت‌های جزئی نشان می‌دهد که در نانونوارهای باریک‌تر، اتم‌های واقع در لبه نسبت به اتم‌های میانی سهم بیشتری در چگالی حالت‌ها دارند.

کلیدواژه‌ها


عنوان مقاله [English]

The structural and Electronic Properties of the Hydrogenated Zigzag GaN Nanoribbons Using Density Functional Theory

نویسندگان [English]

  • Shahdokht Sohrabi Sani 1
  • Samira Pouladi 2
1 Physics, Science, Razi University, Kermanshah, Iran
2 Department of Physics, Faculty of Science, Razi University, Kermanshah, Iran.
چکیده [English]

The structural and electronic properties of the hydrogenated zigzag GaN nanoribbons with different widths 19.2, 24.85, 30.49 and 36.14 Å corresponding to numbers of the zigzag chain, 3, 5, 7, 9, have been studied. Density functional theory with full potential augmented plane wave approach and the generalized gradient approximation (GGA) are used for exchange-correlation functional. The curves of total and partial density of states and electronic density of the nanoribbons were drawn. These computations show that all of the nanoribbons have semiconducting behavior. Values of energy gap of the nanoribbons are 2.687 eV, 2.304 eV, 2.107 eV and 2.008 eV for the ribbons with 3, 5, 7 and 9 width, respectively. With increasing the width of the nanoribbons, the band gap is decreased. Also, these nanoribbons do not have magnetic property. In addition, in narrower ribbon, the partial density of states shows that the edge atoms have more constitution than that of inner atoms in density of states.

کلیدواژه‌ها [English]

  • Density Functional Theory
  • Nanoribbon
  • GaN
  • Electronic Properties
  • Density of States
[1] Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., FirsovA. A., “Electric field effect in atomically thin carbon films”, Science, 306, 666–669, 2004.
[2] Geim A. K., Novoselov K. S., “The rise of graphene”, Nat. Mater, 6, 183–191, 2007.
[3] Novoselov K. S., Jiang Z., Zhang Y., Morozov S. V., Stormer H. L., Zeitler U., .Maan J. C., Boebinger G. S., Kim P., Geim A. K., “Room temperature quantum hall effect in graphene”, Science, 315, 1379, 2007.
[4] Ataca C., ahin H. S., Aktürk E., Ciraci S., “Mechanical and electronic properties of MoS nanoribbons and their defects”, J. Phys. Chem. C, 115, 3934, 2011.
[5] Wan Q., Xiong Zh., Dai J., Rao J., Jiang F., “First-principles study of Ag-based p-type doping difficulty in ZnO”, Opt. Mater, 30, 817– 821, 2008.
[6] Sun L., Li Y., Li Z., Li Q., Zhou Z., Chen Z., Yang J., Hou J. G., “Electronic structures of SiC nanoribbons”, J. Chem. Phys,129, 174114–174117, 2008.
[7] Vurgaftman I., Meyer J. R., Ram-Mohan L. R., “Band parameters for III–V compound semiconductors and their alloys”, J. Appl. Phys, 899, 5815–5880, 2001.
[8] Ponce F. A., Bour D. P., “Nitride-based semiconductors for blue and green light- emitting devices”, Nature, 386, 351–359, 1997.
[9] Liao J., Sa B., Zhou J., Ahuja R., Sun Zh., “Design of high-efficiency visible-light photocatalysts for water splitting: MoS2/AlN(GaN) heterostructures”, J. Phys. Chem. C, 118, 17594–17599, 2014.
[10] Mei Y. F., Thurmer D. J., Deneke C., Kiravittaya S., Chen Y.F., Dadgar A., Bertram F., Bastek B., Krost A., Christen J., Reindl T., Stoffel M., Coric E., Schmidt O. G., “Fabrication, self-assembly, and properties of ultrathin AlN/GaN porous crystalline nanomembranes: tubes, spirals, and curved sheets”, ACS Nano, 3, 1663–11668, 2009.
[11] Morkoc H., Strite S., Gao G. B., Lin M.E., Sverdlov B., Burns M., “Large band-gap, SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technology”, J. Appl. Phys, 76 (3), 1363-1398, 1994.
[12] Vurgafman I., Meyer J. R., Ram-Mohan L. R., “Band parameters for III-V compound semiconductors and their alloys”, J. Appl. Phys, 89 5815, 2001.
[13] Ponce F. A., Bour D. P., “Nitride- based semiconductors for blue and green light emitting devices”, Nature, 368 351-359, 1997.
[14] Huang Y., Duan X., Cui Y., Lieber C.M., “Gallium Nitride Nanowire Nano devices”, Nano Lett, 2 (2), 101-104, 2002.
[15] Goldberger J., R. He R., Zhang Y., et al., “Single-crystal gallium nitride nanotubes”, Nature, 422, 599-602, 2003.        
[16] Lee S.M., Lee Y. H., Hwang Y. G., et al. “Stability and electronic structure of GaN nanotubes from density- functional calculations”, Phys Rev B, 60, 7788-7791, 1999.
[17] Mintmire J. W., Dunglap B. I., White C. T., “Are fullerene tubules metallic?” Phys Rev Lett, 68, 631-634,1992.
[18] Zheng F., Zhang J., Zhang Y., Ji V., “First-principles study of the perfect and vacancy defect AlN nanoribbon”, Physica B, 405, 3775-3781, 2010.
[19] Du A. J., Zhu Z.H., Chen Y., Lu G. Q., Smit S. C., “First principle studies of zigzag AlN nanoribbon”, Chem. Phys. Lett, 469, 2009.
[20] Tang Q., Cui Y., Li Y., Zhon Z., Chen Z., “How do surface and edge effect alter the electronic properties of GaN nanoribbons?”, J. Phys. Chem. C, 115, 1724, 2011.
[21] Li H., Dai J., Zhang S., Zhou J., Zhang L., Chu W., Chen D., Zhao H., Yang J., Wu Z., “Electronic structures and Magnetic properties of GaN Sheets and Nanoribbons”, J. Phys. Chem. C, 114, 11390, 2010.
[22] Chen Q., Song R., Chen Ch., Chen X., “Tunable band gap of AlN, GaN nanoribbons and AlN/GaN nanoribbon heterojunctions:A first- principle study”, Solid State Communication, 172, 24-28, 2013.
[23] Wu Q., Hu Z., Wang X.Z., Chen Y., “Synthesis and Optical Characterization of Aluminum Nitride Nanobelts”, J. Phys. Chem. B, 107, 9726-9729, 2003.
[24] Xie T., Lin Y., Wu G.S., Yuan X. Y., Jiang Z., Ye C.H., Meng G.W., Zhang L.D., “AlN serrated nanoribbons synthesized by chloride assisted vapor-solid route”, Inorg. Chem. Commun, 7, 545, 2004.
[25] Xiang X., Cao C., Huang F., Lv R., Zhu H., “Synthesis and Characterization of Crystalline gallium nitride nanoribbon rings”, J. Cryst. Growth, 263, 25-29, 2004.
[26] Wu M., Wu X., Pie Y., Zeng X., “Inorganic nanoribbons with unpassivatede zigzag edge: Half metallicity and edge reconstruction”, Nano Res, 42, 233-239, 2011.
[27] Blaha P., Schwars K., Madsen G., Kvasnicka D., Luitz J., “WIEN2K, in: An augmented plane wave+ local orbitals program for calculating crystal properties”, Vienna University of Technology Inst. Of Physical and Theoretical Chemistry, 2011.
[28] Perdew J.P., Burke K., Ernzerhof M., “Generalized Gradieent Approximation Made Simple”, Phys. Rev, let.,77, 3865, 1996.
[29] Jiang D., Sumpter B.G., Dai S., “Unique chemical reactivity of a graphene nanoribbon’s zigzag edge”, J. Chem. Phys, 126, 134701, 2007.
[30] Stamp C. and Van de Walle C.G., “Density Functional calculation for III-V Nitrides Using the local Density Approximation and the Generalized Gradient Approximation”, J. Phys. B, 59, 5521-5535, 1999.