مقاله پژوهشی:رسانندگی الکتریکی نانولوله‌های کربنی و نیترید بور آرمچیر در مدل تنگ‌بست

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، گروه فیزیک، دانشگاه رازی، کرمانشاه، ایران

2 دانش آموختۀ کارشناسی ارشد، گروه فیزیک، دانشگاه رازی، کرمانشاه، ایران

3 دانشجوی دکترا، گروه فیزیک، دانشگاه رازی، کرمانشاه، ایران

چکیده

در این مقاله، چگالی حالت‌ها و رسانندگی الکتریکی نانولوله‌های کربنی و نیترید بور آرمچیر با قطرهای مختلف با استفاده از تقریب تنگ‌بست، رهیافت تابع گرین و رابطۀ رسانندگی کوبو محاسبه می‌شود و نتایج حاصل با چگالی‌حالت‌ها و رسانندگی الکتریکی یک صفحۀ گرافین و نیترید بور مقایسه می‌شود. نتایج نشان می‌دهد که نانولوله‌های کربنی آرمچیر برخلاف صفحۀ گرافین که نیم‌فلز است، همگی رسانا هستند در حالی که نانولوله‌های نیترید بور آرمچیر مشابه با یک صفحۀ نیترید بور، همگی نیم‌رسانا می‌باشند. هم‌چنین، مشاهده می‌شود که رسانندگی الکتریکی صفحه‌گرافینی به دلیل نیم‌فلز بودن در همۀ دماها از صفحۀ نیترید بور بیشتر است. علاوه بر این‌ها، دیده می‌شود که رسانندگی الکتریکی هر دو نوع نانولوله با افزایش قطر و سطح مقطع، کاهش می‌یابد چرا که با افزایش قطر مسیرهای عرضی جدیدی برای حرکت الکترون ایجاد می‌شود و در نتیجه تحرک و رسانندگی در راستای طول نانولوله‌ها کاهش می‌یابد. به علاوه مشاهده می‌شود که با افزایش قطر، رفتار نانولوله‌های کربنی به سمت گرافین و نانولوله‌های نیترید بور به سمت صفحۀ نیترید بور میل می‌کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Electrical Conductivity of Armchair Carbon and Boron Nitride Nanotubes in Tight-binding Model

نویسندگان [English]

  • Hamze Mousavi 1
  • Sousan Mohmmadi 2
  • Samira Jalilvand 3
1 Associate Professor, Department of Physics, Razi University, Kermanshah, Iran
2 MSc in Physics, Department of Physics, Razi University, Kermanshah, Iran.
3 Phd Student in Physics, Department of Physics, Razi University, Kermanshah, Iran
چکیده [English]

In this study, within the tight-binding Hamiltonian model, the Green’s function approach, and the Kubo formula, the density of states and the electrical conductivity (EC) of armchair carbon and boron nitride (BN) nanotubes with different diameters are investigated and the results are compared with graphene and BN monolayers. The results show that, contrary tographene, which is a semimetal, armchair carbon nanotubes of any diameter are conductors, while armchair BN nanotubes similar to a BN monolayer are all semiconductors. Also, since it is a semimetal, the EC of graphene is observed to be higher than BN monolayer at all temperatures. In addition, it can be seen that the ECs of both types of nanotubes decrease with increasing diameter and approaches the EC of graphene and BN monolayer becausethe increase in the cross sectionsize provides more lateral ways for electrons to move in transverse directions with respect to the longitudinal axis, and this in turn reduces their mobility along that longitudinal axis. It is also observed that by increasing the diameter, the behaviors of carbon and boron nitride nanotubes respectively approach those of graphene and boron nitride plane.

کلیدواژه‌ها [English]

  • Armchair Carbon Nanotubes
  • Armchair Boron Nitride Nanotubes
  • Tight-binding Model
  • Green’s Function Approach
  • Electrical Conductivity
[1]     Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V. and Firsov A.A., Electric Field Effect in Atomically Thin Carbon Films, Science, 306, 666-669, 2004.
[2]     Novoselov K.S., Geim A.K., Morozov S., Jiang D., Katsnelson M.I., Grigorieva I., Dubonos S. and Firsov A.A., Two-dimensional Gas of Massless Dirac Fermions in Graphene, Nature, 438, 197-200, 2005.
[3]     Castro Neto A., Guinea F., Peres N.M., Novoselov K.S. and Geim A.K., The Electronic Properties of Graphene, Reviews of Modern Physics, 81, 109-162, 2009.
[4]     Mosher M.D. and Ojha S., Hybridization and Structural Properties: A Physical Organic Chemistry Experiment, Journal of Chemical Education, 75, 888-890, 1998.
[5]     Balmain W.H., XLVI. Observations on the Formation of Compounds of Boron and Silicon with Nitrogen and Certain Metals, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 21, 270-277, 1842.
[6]     Iijima S., Helical Microtubules of Graphitic Carbon, Nature, 354, 56-58, 1991.
[7]     Saito R., Fujita M., Dresselhaus G. and Dresselhaus M.S., Electronic Structure of Graphene Tubules Based on C 60, Physical Review B, 46, 1804-1811, 1992.
[8]     Singh I., Rehni A.K., Kumar P., Kumar M. and Aboul‐Enein H.Y., Carbon Nanotubes: Synthesis, Properties and Pharmaceutical Applications, Fullerenes, Nanotubes and Carbon Nanostructures, 17, 361-377, 2009.
[9]     Feng L. and Liu Z., Graphene in Biomedicine: Opportunities and Challenges, Nanomedicine, 6, 317-324, 2011.
[10] Novoselov K.S., Jiang D., Schedin F., Booth T.J., Khotkevich V.V., Morozov S.V. and Geim A.K., Two-dimensional Atomic Crystals, Proceedings of the National Academy of Sciences, 102, 10451-10453, 2005.
[11] Mousavi H., The Impact of Gas Molecule Adsorption on the Orbital Magnetic Susceptibility of Graphene, Journal of Magnetism and Magnetic Materials, 322, 2533-2536, 2010.
[12] Mousavi H., Sublattice Superconductivity in Boron Nitride Nanotube, Journal of Superconductivity and Novel Magnetism, 26, 2905-2909, 2013.
[13] Mousavi H. and Khodadadi J., Graphene to Graphane: Two-band Approach, Superlattices and Microstructures, 88, 434-441, 2015.
[14] Mousavi H., Gas Adsorption Effects on the Electrical Conductivity of Semiconducting Carbon Nanotubes, Physica E: Low-dimensional Systems and Nanostructures, 44, 454-459, 2011.
[15] Saito R., Dresselhaus G. and Dresselhaus M.S., Physical Properties of Carbon Nanotubes, Imperial College Press, London, 35-70, 1998.
[16] Slater J.C. and Koster G.F., Simplified LCAO Method for the Periodic Potential Problem, Physical Review, 94, 1498-1524, 1954.
[17] Harrison A.W., Structure and the Properties of Solids, Dover, New York, 31-55, 1989.
[18] Kaxiras E., Atomic and Electronic Structure of Solids, Cambridge University Press, United Kingdom, 121-140, 2003.
[19] Grosso G. and Parravicini G.P., Solid State Physics, 2nd ed., Academic Press, USA, 182-189, 2014.
[20] Mousavi H., Effects of Adsorbed Gas on the Electrical Conductivity of Metallic Carbon Nanotubes, Solid State Communications, 150, 755-758, 2010.
[21] Mousavi H. and Khodadadi J., Electronic Heat Capacity and Conductivity of Gapped Graphene, Physica E: Low-dimensional Systems and Nanostructures, 50, 11-16, 2013.
[22] Mousavi H., Electronic Properties of Doped Gapped Graphene, Physica B: Condensed Matter, 414, 78-82, 2013.
[23] Bruus H. and Flensberg K., Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, 2nd Ed., Oxford University Press, United Kingdom, 139-151, 2004.
[24] Economou E.N., Green’s Functions in Quantum Physics, 3rd Ed., Springer-Verlag, Berlin Heidelberg, 80-101, 2006.
[25] Yoshioka T., Suzuura H. and Ando T., Electronic States of BCN Alloy Nanotubes in a Simple Tight-binding Model, Journal of the Physical Society of Japan, 72, 2656-2664, 2003.
[26] Velicky B., Theory of Electronic Transport in Disordered Binary Alloys: Coherent-Potential Approximation, Physical Review, 184, 614-627, 1969.
[27] Edwards S.F., A New Method for the Evaluation of Electric Conductivity in Metals, Philosophical Magazine, 3, 1020-1031, 1958.
[28] Edwards S.F., The Statistical Thermodynamics of a Gas with Long and Short-Range Forces, Philosophical Magazine, 4, 1171-1182, 1959.