مقاله پژوهشی:شبیه‌سازی تولید هماهنگ‌های دوم و چهارم لیزر تپی Nd:YAG با استفاده از بلورهای غیرخطی: با رویکرد بررسی بازده

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری فیزیک اتمی و مولکولی، دانشکده فیزیک، دانشگاه علم و صنعت ایران، تهران، ایران

2 پژوهشگر، دانشکده و پژوهشکده علوم پایه، دانشگاه جامع امام حسین(ع)، تهران، ایران

چکیده

در چند دهۀ اخیر، از هماهنگ‌های دوم و چهارم لیزر Nd:YAG به عنوان یکی از پرکاربردترین و محبوب‌ترین لیزرهای حالت جامد، به طور گسترده‌ای در زمینه‌های مختلف نظامی و در زمینه‌های مختلف پزشکی و صنعتی و … استفاده شده است. از روش‌های پر بازده و متداول در تولید هماهنگ لیزرها می‌توان به استفاده از بلورهای غیرخطی اشاره کرد. در این مقاله، شبیه‌سازی تولید هماهنگ‌های دوم و چهارم لیزر تَپی Nd:YAG با ویژگی­های طول موج 1064 نانومتر، چگالی انرژی 1 ژول در سانتی­متر مربع و نیز پهنای زمانی تَپ 10 نانوثانیه با در نظر گرفتن آثار دمایی و زاویۀ واگرایی پرتوی فرودی انجام شده است. بازدهی تبدیل تولید هماهنگ دوم این لیزر با استفاده از بلورهای KTP و BBO و LBO بررسی شده است. نتایج شبیه‌سازی، بلور KTP را با بازدهی59/89 درصد به عنوان پربازده­ترین بلور پیشنهاد می­کند. پیش‌تر به دست آوردن بازدهی80 درصد با استفاده از چیدمان تجربی از لیزر Nd:YAG با ویژگی‌های مشابه مشخصات شبیه‌سازی‌شده در این مقاله با استفاده از بلور KTP ارائه شده بود. هم‌چنین بازدهیتبدیل تولید هماهنگ چهارم این لیزر با استفاده از بلورهای BBO و CLBO و DKDP بررسی شده است. نتایج شبیه‌سازی حاضر، بلور BBO را با بازدهی21/19 درصد به عنوان پربازده‌ترین بلور پیشنهاد می‌کند .این در حالی است که بازدهی12 درصدی در چیدمان تجربی با مشخصات لیزر Nd:YAG مشابه طی مقاله‌ای ارائه شده بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Simulation of Second Harmonic Generation of a Pulsed Nd:YAG Laser Using Nonlinear Crystals: with the Approach of Efficiency Investigation

نویسندگان [English]

  • Rasoul Pashaie 1
  • Nader Amiri Rad 2
1 PhD Student in atomic and molecular physics, Physics Department, Iran University of Sciencs and Technology, Tehran, Iran
2 Researcher, Physics Department, Imam Hussein University, Tehran, Iran
چکیده [English]

Second harmonic generation of Nd:YAG laser, as one of the most applicable and popular solid-state lasers, has been widely used in different fields of military applications and in diverse fields of medicine and industry etc., in last few decades. Non-linear crystals are mentioned as one of the most efficient and common methods for harmonic generating of lasers. In this research, we performed the simulation of the second and fourth harmonic generation of pulsed Nd:YAG laser with characteristics of 1064nm wavelength, 1joule/cm2 energy density, and 10ns pulse width, and considering the effects of temperature and divergence angle of the incident beam. The conversion efficiency of the second harmonic generation of this laser was investigated using KTP, BBO and LBO crystals. The simulation results suggested the KTP crystal as the most efficient crystal with 89.59% conversion efficiency. Formerly, achieving 80% efficiency using Nd: YAG laser with similar characteristics of the simulated specifications presented in this paper by using KTP crystal in an experimental configuration had been presented. In addition, the conversion efficiency of the fourth harmonic generation of this laser was investigated using BBO, CLBO and DKDP crystals. The simulation results suggested the BBO crystal as the most efficient crystal with 19.21% conversion efficiency. For the sake of comparison, 12% efficiency in the experimental layout with similar Nd:YAG laser specifications, presented in this article, had been presented in another article.

کلیدواژه‌ها [English]

  • Conversion Efficiency
  • Nonlinear Crystals
  • Second Harmonic Generation (SHG)
  • Fourth Harmonic Generation (FHG)
  • Nd:YAG Laser
[1]     Boyd, R.W., Nonlinear Optics, Academic press, 1992.
[2]     Hajiesmaeilbaigi, F.; Razzaghi, H.; Mahdizadeh, M.; Moghaddam, M. R. A.; Ruzbehani, M. “Design and Construction of a 110 W Creen Laser for Medical Application”; OPT LASER TECHNOL. 2011, 43, 1428-1430.
[3]     Hopkins, F. K. “Military Laser Applications: Providing Focus to Nonlinear Optics R&D”; OPT PHOTONICS NEWS. 1998, 9, 32.
[4]     Klein, M. W.; Wegener, M.; Feth, N.; Linden, S. “Experiments on Second-and Third-Harmonic Generation from Magnetic Metamaterials”; OPT EXPRESS. 2007, 15, 5238-5247.
[5]     Klein, M. W.; Enkrich, C.; Wegener, M.; Linden, S. “Second-Harmonic Generation from Magnetic Metamaterials”; SCIENCE. 2006, 313, 502-504.
[6]     Miller; Robert C. “Optical Second Harmonic Generation in Piezoelectric Crystals”; APPL PHYS LETT. 1964, 5, 17-19.
[7]     Bergman Jr, J. G.; McFee, J. H.; Crane, G. R. “Pyroelectricity and Optical Second Harmonic Generation in Polyvinylidene Fluoride Films”; APPL PHYS LETT. 1971, 18, 203-205.
[8]     Koechner, W., Solid-State Laser Engineering, SPRINGER. 2006.
[9]     Driscoll, T. A.; Hoffman, H. J.; Stone, R. E.; Perkins, P. E. “Efficient Second-Harmonic Generation in KTP Crystals”; J OPT SOC AM.  B 3, 1986, 5, 683-686.
[10] Fan, T. Y.; Huang, C. E.; Hu, B. Q.; Eckardt, R. C.; Fan, Y. X.; Byer, R. L.; Feigelson, R. S. “Second Harmonic Heneration and Accurate Index of Refraction Measurements in Flux-Grown KTiOPO4”; APPL OPTICS. 1987, 26, 2390-2394.
[11] Brown, A. J.; Bowers, M. S.; Kangas, K. W.; Fisher, C. H. “High-energy, High-Efficiency Second-Harmonic Generation of 1064-nm Radiation in KTP”; OPT LETT. 1992, 17, 109-111.
[12] Ruikun, Wu. “High-Efficiency and Compact Blue Source: Intracavity Frequency Tripling by Using LBO and BBO Without the Influence of Birefringence”; APPL OPTICS. 1993, 32, 971-975.
[13] Yuan, X.; Wang, J.; Chen, Y.; Wu, Y.; Qi, Y.; Sun, M.; Wang, Q. “Laser at 532 nm by Intracavity Frequency-Doubling in BBO”; J SEMICOND. 2017, 38, 064007.
[14] Zhang, Zilong, Qiang, Liu, and Mali Gong. “32.5 mJ 4.6 ns 532 nm Q-switched Nd:YAG Laser at 500 Hz”; APPL OPTICS.2013, 52, 2735-2738.
[15] Dudley, D. R.; Mehl, O.; Wang, G. Y.; Allee, E. S.; Pang, H. Y., Hodgson, N. “Q-switched Diode-Pumped Nd:YAG Rod Laser With Output Power of 420W at 532nm and 160W at 355nm”; P SOC PHOTO-OPT INS: Vol. 7193, INT SOC PHOTO-OPT, 2009.
[16] Bhandari, R.; T. Taira. “0.5 MW peak power, kHz repetition rate at 266 nm using cut Nd: YAG microchip laser”; CLEO: IEEE, 2014.
[17] Zhu, S. “A LD side-pumped deep ultraviolet laser at 266 nm by using a Nd: YAG/Cr4+: YAG/YAG composite crystal”; OPT LASER TECHNOL. 63, 24-28, 2014.
[18] Kumar, S. “High-power, high-repetition-rate performance characteristics of β-BaB 2 O 4 for single-pass picosecond ultraviolet generation at 266 nm”; OPT EXPRESS. 23.21, 28091-28103, 2015.
[19] Yang, H. “Improved beam profile of a 266 nm deep ultraviolet laser employing a multi-mirror-reflected cavity”; LASER PHYS LETT. 13.4, 045002, 2016.
[20] Chai, X. “Noncritical phase-matched fourth harmonic generation properties of traditional grown large-size DKDP crystal”; OPT COMMUN. 392, 162-166, 2017.
[21] Liu, Q. “High-energy single longitudinal mode 1 ns all-solid-state 266 nm lasers” APPL PHYS B. 89.2-3, 155-158, 2007.
[22] Sutherland, R.L., Handbook of Nonlinear Optics, CRC press. 2003.
[23] Polyanskiy, M. N. “Refractive Index Database”; https://refractiveindex.info, 2019.
[24]  Beijing Gospel OptoTech Co. “Crystal, Laser and Optics”; http://www.bjgot.com /index _home.html, 2019.
[25] Chen, C.; Wu, B.; Jiang, A.; You, G.; “A New Type Ultraviolet SHG Crystal â-BaB2O”; SCI SINICA. 1985, B 28, 235-243.
[26] Drnitriev, V. G.; Gurzadyan, G. G.; Nikogosyan, D. N. “Handbook of Nonlinear Optical Crystals”; Vol. 64, SPRINGER SERIES OPTI. 1999.
[27] Armstrong, J.; Bloembergen, N.; Ducuing, J.; Pershan, P. “Interactions Between Light Waves in a Nonlinear Dielectric”; PHYS REV. 1962, 127, 1918.
[28] Kruglik, G., N.; Kondratyuk, Shagov, A. A.; “Efficient Fourth Harmonic Generation of Nd: YAG Laser in DKDP Crystals”; ICONO 2001: P SOC PHOTO-OPT INS. Vol. 4751, INT SOC PHOTO-OPT. 2002, 137-144.
[29] Sabaeian, M.; Mousave, L.; Nadgaran, H.; “Investigation of Thermally-Induced Phase Mismatching in Continuous-Wave Second Harmonic Generation: a Theoretical Model”; OPT EXPRESS. 2010, 18, 18732-18743.
[30] Mohammad-Rezaee, M.; Sedaghat Jalil abadi, F.; Motazedian, A.; Sabaian, M. “Investigation of Temperature-Induced Phase Mismatching Effect in Efficiency and Temperature Band Width of Second Harmonic Generation in Double-Pass KTP Type II Crystal”; IRAN CONF PHOTO-OPT . 2012, 253-258.
[31] Yap, Y. K.; Inagaki, M.; Nakajima, S.; Mori, Y.; Sasaki, T. “High-Power Fourth-and Fifth-Harmonic Generation of a Nd: YAG Laser by Means of a CsLiB6O10”; OPT LETT. 1996, 21, 1348-1350.
[32] Zheng, J.; Zhao, S.; Wang, Q.; Zhang, X.; Chen, L. “Influence of Thermal Effect on KTP type-II Phase-Matching Second-Harmonic Generation”; OPT COMMUN. 2001,199, 207-214.
[33] DeSalvo, R.; Hagan, D. J.; Sheik-Bahae, M.; Stegeman, G.; Van Stryland, E. W.; Vanherzeele, H. “Self-Focusing and Self-Defocusing by Cascaded Second-Order Effects in KTP”; OPT LETT. 1992, 17, 28-30.
[34] Zhang, L.; Zhang, F.; Xu, M.; Wang, Z.; Sun, X, “Rapid Growth of a Large Size, Highly Deuterated DKDP Crystal and Its Efficient Noncritical Phase Matching Fourth-Harmonic-Generation of a Nd: YAG Laser”; RSC ADV. 2015, 5, 74858-74863.
[35] Eimerl, D. “High Average Power Harmonic Generation”; IEEE J QUANTUM ELECT. 1987, 23, 575-592.
[36] Nikogosyan, D. N., Nonlinear Optical Crystals, SPRINGER, 2005.
[38] Knittel, J.; Kung, A. H. “39.5% Conversion of Low-Power Q-switched Nd: YAG Laser Radiation to 266 nm by Use of a Resonant Ring Cavity”; OPT LETT. 1997, 22, 366-368.