مقالۀ پژوهشی: شاخص‌های غیرکلاسیکی برای حالت‌های عددی درهم‌تنیده و چلانده

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، دانشکده فنی و مهندسی مرند، دانشگاه تبریز، تبریز، ایران

2 دانشیار، گروه فیزیک، دانشگاه زنجان، زنجان، ایران

3 دانش‌آموخته کارشناسی ارشد، گروه فیزیک، دانشگاه زنجان، زنجان، ایران

چکیده

بسیاری از شاخص‌های غیرکلاسیکی برای اندازه‌گیری اثرات کوانتومی سیستم‌های مختلف استفاده می‌شود. شاخص‌های غیرکلاسیکی کنفک و صادقی به ترتیب بر حسب میزان منفی‌ها در تابع توزیع ویگنر و تداخل‌های توابع توزیع حقیقی در مکانیک کوانتومی فضای فاز معرفی شده‌اند. شاخص غیرکلاسیکی کنفک برای بسیاری از حالت‌های کوانتومی تنها در نمایش ویگنر به‌کار می‌رود، اما شاخص غیرکلاسیکی صادقی افزون بر نمایش ویگنر برای سایر توابع توزیع حقیقی، چون توابع توزیع هوسیمی و ریویر، نیز استفاده می‌شوند. در این مقاله، این شاخص‌های غیر‌کلاسیکی را برای اندازه‌گیری ویژگی‌های کوانتومی برهم ‌نهی و درهم‌تنیدگی حالت‌های عددی در نمایش‌های ویگنر، هوسیمی و ریویر مورد بررسی قرار داده شده است.  همچنین، مزیت بیشتر شاخص صادقی برای حالت عددی دو ترازه‌ی درهم‌تنیده، نسبت به شاخص کنفک نشان داده شده است. افزون بر این، برای حالت عددی درهم‌تنیده دو ترازی، هماهنگی بین شاخص غیرکلاسیکی صادقی و آنتروپی فن نویمن نشان داده شده است. در پایان نشان داده شد که برای برهم‌نهی حالت‌های عددی پایه چلانده و حالت عددی پایه، پارامتر چلاندگی بر ویژگی درهم تنیدگی تاثیر گذاشته و شاخص غیرکلاسیکی صادقی با افزایش پارامتر چلاندگی افزایش می‌یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Research Paper: Non-Classicality Indicators of Entangled and Squeezed Number States

نویسندگان [English]

  • Parvin Sadeghi 1
  • Siamak Khademi 2
  • Elham Motaghi 3
1 Assistant Professor, Marand faculty of Engineering, University of Tabriz, Tabriz, Iran
2 Associate Professor, Department of physics, Faculty of Science, University of Zanjan, Zanjan, Iran.
3 M. Sc. Graduated, Department of physics, Faculty of Science, University of Zanjan, Zanjan, Iran
چکیده [English]

Many non-classicality indicators are used to measure the quantum effects of different systems. Kenfack's and Sadeghi's non-classicality indicators are introduced regarding the amount of Wigner distribution function's negativities and interferences in phase space quantum mechanics, respectively. Kenfack’s non-classicality indicator is used for cases just in the Wigner representation, whereas Sadeghi’s non-classicality indicator is effectively, applied for some real distribution functions. In this paper, we investigate these non-classicality indicators for the entangled photon number states in the Wigner, Husimi, and Rivier representations. It is shown that for a two-level entangled state, Sadeghi's indicator has more benefits to measure entanglement with respect to Kenfack's indicator. For the two-level entangled state, we also show a correspondence between Sadeghi's non-classicality indicator and the Von Neumann entropy. It is also shown that for the superposition of the squeezed number state and ground number state, the squeezing parameter affects the entanglement feature and Sadeghi's non-classicality indicator increases with the increase of the squeezing parameter.

کلیدواژه‌ها [English]

  • Non-classicality Indicator
  • Wigner Function
  • Husimi Function
  • Entangled States
  • Squeezed Number States
[1] Wigner E.P., "On the Quantum Correction for Thermodynamic Equilibrium", Physical Review, 40, 49, 1932. http://dx.doi.org/10.1103/PhysRev.40.749
[2] Hillery M., Oconnel R.F., Scully M.O. and Wigner E.P., "Distribution functions in physics: Fundamentals", Physics Reports, 106, 121-167, 1984. 10.1016/0370-1573(84)90160-1
[3] Lee H.W., "Theory and application of the quantum phase-space distribution functions", Physics Reports, 259, 147-211, 1995. https://doi.org/10.1016/0370-1573(95)00007-4
[4] Nogues G., Rauschenbeutel A., Osnaghi S., Bertet P., Brune M., Raimond J.M., Haroche S., Lutterbach L.G. and Davidovich L., "Measurement of a negative value for the Wigner function of radiation",  Physical Review A, 62, 054101, 2000. https://doi.org/10.1103/PhysRevA.62.054101
[5] Rigas I., Sanchez-Soto L.L., Klimov A.B., Rehacek J. and Hradil Z., "Orbital angular momentum in phase space", Annals of Physics, 326, 426-439, 2011. https://doi.org/10.1016/j.aop.2010.11.016
[6] Kenfack A. and Zyczkowski K., "Negativity of the Wigner function as an indicator of non-classicality", Journal of Optics B: Quantum and Semiclassical Optics, 6, 396, 2004. https://doi.org/10.1088/1464-4266/6/10/003
[7] Hertz A. and Bièvre S. De, "Decoherence and nonclassicality of photon-added and photon-subtracted multimode Gaussian states", Physical Review A, 107, 043713, 2023. https://doi.org/10.1103/PhysRevA.107.043713
[8] Tinh P. N. D. and Duc T. M., "Photon-added squeezing-enhanced coherent state and its nonclassical and non-Gaussian properties", Optik, 287, 171019, 2023. https://doi.org/10.1016/j.ijleo.2023.171019
[9] Le T. H. T., Ho S. C., Tran Q. D. and Truong M. D., "Enhancement of dynamical entanglement in a dispersive two-mode Jaynes–Cummings model via superposition of photon-added pair coherent state", Laser Physics Letters, 20, 75203, 2023.
10.1088/1612-202X/acde74
[10] Kirkwood J.G., "Quantum statistics of almost classical assemblies", Physical Review, 44, 31, 1933. https://doi.org/10.1103/PhysRev.44.31
[11] Husimi K., "Some formal properties of the density matrix", Proceedings of the Physico-Mathematical Society of Japan. 3rd Series, 22, 264-314, 1940. https://doi.org/10.11429/ppmsj1919.22.4_264
[12] Rivier D.C., "On a one-to-one correspondence between infinitesimal canonical transformations and infinitesimal unitary transformations", Physical Review, 83, 862, 1951. https://doi.org/10.1103/PhysRev.83.862
[13] Glauber R.J., "The Quantum theory of optical coherence", Physical Review, 131, 2766, 1963. https://doi.org/10.1103/PhysRev.130.2529
[14] Glauber R. J., In Quantum Optics and Electronics, New York, 1965.
[15] Chaturvedi S., Drummond P. D. and Walls D. F., "Two photon absorption with coherent and partially coherent driving fields", Journal of Physics A: Mathematical and General, 10, L187, 1977. https://doi.org/10.1088/0305-4470/10/11/003
[16] Drummond P.D.  and Deuar P., "Quantum dynamics with stochastic gauge simulations", Journal of Optics B: Quantum and Semiclassical Optics, 5, S281, 2003. https://doi.org/10.1088/1464-4266/5/3/359
[17] Sadeghi P., Khademi S., Darooneh A.H., "Tsallis entropy in phase-space quantum mechanics", Physical Review A, 86, 012119, 2012. https://doi.org/10.1103/PhysRevA.86.012119
[18] Sadeghi P., Khademi S., Nasiri S., "Nonclassicality indicator for the real phase-space distribution function", Physical Review A, 82, 012102, 2010. https://doi.org/10.1103/PhysRevA.82.012102
[19] Kenfack A., "Comment on Nonclassicality indicator for the real phase-space distribution functions", Physical Review A, 93, 036101, 2016. https://doi.org/10.1103/PhysRevA.93.036101
[20] Khademi S., Sadeghi P., Nasiri S., "Reply to “Comment on 'Nonclassicality indicator for the real phase-space distribution functions'”", Physical Review A, 93, 36102, 2016. https://doi.org/10.1103/PhysRevA.93.036102
[21] Schleich W.P., Quantum Optics in Phase Space, Berlin, 2001.
[22] Mansour H. A. and Siyouri F. Z., "Wigner function as a detector of entanglement in open two coupled in as semiconductor quantum dots", International Journal of Theoretical Physics volume, 61, s10773-022-05094-x, 2022. https://doi.org/10.1007/s10773-022-05094-x
[23] Albano L., Mundarain D. F. and Stephany J., "On the squeezed number states and their phase space representations", Journal of Optics B: Quantum and Semiclassical Optics, 4, 352–357, 2002.  https://doi.org/10.1088/1464-4266/4/5/319