مقالۀ پژوهشی: تک‌لایه‌های دوبعدی MnSX (X= Cl, Br, I) با فرومغناطیس ذاتی و نیمه‌فلزی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته دکتری، گروه فیزیک، دانشگاه فردوسی مشهد، مشهد، ایران

2 استاد، گروه فیزیک، دانشگاه فردوسی مشهد، مشهد، ایران

3 استادیار، گروه فیزیک، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

   ویژگی­های ساختاری، پایداری، ویژگی­های الکترونی و مغناطیسی تک­لایه­های دوبعدی ژانوس MnSX (X= Cl, Br, I) با استفاده از محاسبات اصول اولیه قطبش اسپینی به کمک نظریه تابعی چگالی مورد مطالعه قرار گرفت. با محاسبه طیف فونونی تک­لایه­های ژانوس منگنز سولفید هالید پایداری دینامیکی آن­ها تأیید شد. همچنین با مطالعه ساختار الکترونی این تک­لایه­های ژانوس نشان داده شد که این تک­‌لایه‌­ها نیمه­‌فلز با شکاف نیمه فلزی کمابیش بزرگی می­باشند، که سبب قطبش اسپینی صددرصد در این تک­لایه­ها می­شود. همچنین با محاسبات تابعی چگالی غیرخطی نشان داده شد که تک­­لایه­های ژانوس منگنز سولفید هالید دارای حالت پایه فرومغناطیس می­باشند و محور آسان مغناطش آنها درون صفحه تک­لایه­ها قرار دارد. شدت ناهمسانگردی مغناطیسی تک‌­لایه­‌های ژانوس با افزایش جرم اتمی اتم­های هالید، به دلیل قوی­تر شدن جفت­شدگی اسپین- مدار و نامتقارن­تر شدن ساختار، افزایش می­یابد. همچنین با معرفی هامیلتونی ناهمسانگرد اسپینی هایزنبرگ و تبدیلات مرتبه اول هولشتین- پریماکوف، دمای کوری این تک‌­لایه‌­ها به وسیله محاسبات خودسازگار مغناطش به عنوان تابعی از دما تخمین زده شد. یافته­‌های نظری بدست آمده در این پژوهش، گروه جدیدی از مواد مغناطیسی دو بعدی برای کاربرد در زمینه اسپین ترونیک را ارائه می‌­دهند.  

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Research Paper: 2D Janus MnSX (X= Cl, Br, I) Monolayers with Intrinsic Ferromagnetism and Half-Metallicity

نویسندگان [English]

  • Maral Azmoonfar 1
  • Mahmood Rezaei Roknabadi 2
  • Mohsen Modarresi 3
1 PhD Graduated, Department of Physics, Ferdowsi University of Mashhad, Mashhad, Iran
2 Professor, Department of Physics, Ferdowsi University of Mashhad, Mashhad, Iran
3 Assistant Professor, Department of Physics, Ferdowsi University of Mashhad, Mashhad, Iran
چکیده [English]

Using the first-principles calculations, we have investigated the structural, electronic, and magnetic properties of the two-dimensional Janus MnSX (X= Cl, Br, I) monolayers. The dynamical stability for the 2D Janus monolayers has been confirmed by phonon spectrum calculation. Also, all manganese sulfide halide monolayers show half-metal with 100% spin polarization and a wide half-metallic gap. The noncollinear DFT calculations indicate that the two-dimensional Janus monolayers are ferromagnetically ordered systems and the preferred direction of magnetization lies in-plane of Janus manganese sulfide halide monolayers. The magnetic anisotropy energy increases from MnSCl to MnSI, related to the strong spin-orbit coupling at the I atom and the increased asymmetry between the sulfide and halide planes. The dispersion relation of magnetic excited states is obtained by applying the linear order Holstein–Primakoff transformation to the anisotropic Heisenberg Hamiltonian. We estimated Curie temperature for the monolayers by a self-consistent calculation of magnetization as a function of temperature. Our study presents a new class of 2D magnetic materials for future spintronics and valleytronics.

کلیدواژه‌ها [English]

  • Mn Sulfide Halide Monolayers
  • Ferromagnetic
  • Magnetic Anisotropy
  • Curie Temperature
[1] Gong, C., and Zhang, X., “Two-dimensional magnetic crystals and emergent heterostructure devices”, Science, 363, 706-717, 2019. https://doi.org/10.1126/science.aav4450.
[2] Mermin D., and Wagner H., “Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic heisenberg models”, Phys. Rev. Lett., 17, 1133–1136, 1966. https://doi.org/10.1103/PhysRevLett.17.1133.
[3] Lado J. L., and Fernández-Rossier J., “On the origin of magnetic anisotropy in two dimensional CrI3”, 2D Mater, 4, 35002- 35011, 2017. https://doi.org/10.1088/2053-1583/aa75ed.
[4] Wang D.-s., Wu R., and Freeman A. J., “First-principles theory of surface magnetocrystalline anisotropy and the diatomic-pair model”, Phys. Rev. B, 47, 14932, 1993. https://doi.org/10.1103/PhysRevB.47.14932.
[5] Bruno P., “Tight-binding approach to the orbital magnetic moment and magnetocrystalline anisotropy of transition-metal monolayers”, Phys. Rev. B., 39, 865-868, 1989. https://doi.org/10.1103/physrevb.39.865.
[6] Huang B., Clark G., Navarro-Moratalla E., Klein D. R., Cheng R., Seyler K. L., Zhong D., Schmidgall E., McGuire M. A., Cobden D. H., and et al., “Layer-dependent ferromagnetism in a van der waals crystal down to the monolayer limit”, Nature, 546, 270–273, 2017. https://doi.org/10.1038/nature22391.
[7] Bonilla M., Kolekar S., Ma Y., Diaz H.C., Kalappattil V., Das R., Eggers T., Gutierrez H.R., Phan M.-H., Batzill M., “Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates”, Nature Nanotechnology, 13, 289–293, 2018. https://doi.org/10.1038/s41565-018-0063-9.
[8] Yu W., Li J., Herng T.S., Wang Z., Zhao X., Chi X., Fu W., Abdelwahab I., Zhou J., Dan J., Chen Z., Chen Z., Li Z., Lu J., Pennycook S.J., Feng Y.P., Ding J., Loh K.P., “Chemically exfoliated VSe2 monolayers with room-temperature ferromagnetism”, Adv. Mater., 31,1903779–1903787, 2019. https://doi.org/10.1002/adma.201903779.
[9] Liu Z.-L., Wu X., Shao Y., Qi J., Cao Y., Huang L., Liu C., Wang J.-O., Zheng Q., Zhu Z.-L., Ibrahim K., Wang Y.-L., Gao H.-J., “Epitaxially grown monolayer VSe2: An air-stable magnetic two-dimensional material with low work function at edges”, Sci. Bull, 63, 419–425, 2018. https://doi.org/10.1002/adma.201605407.
[10] O’Hara D. J., Zhu T., Trout A. H., Ahmed A. S., Luo Y. K., Lee C. H., Brenner M. R., Rajan S., Gupta J. A., McComb D. W., and Kawakami R. K., “Room temperature intrinsic ferromagnetism in epitaxial manganese selenide films in the monolayer limit”, Nano Lett., 18, 3125–3131, 2018. https://doi.org/10.1021/acs.nanolett.8b00683.
[11] Chhowalla M., Shin H., Eda G., Li L., Loh K., Zhang H., “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets”, Nature Chem, 5, 263-267, 2013. https://doi.org/10.1038/nchem.1589.
[12] Qian Z., Jiao L., Xie L., “Phase engineering of two-dimensional transition metal dichalcogenides”, Chin. J. Chem., 38, 753-760, 2020. https://doi.org/10.1002/cjoc.202000064.
[13] Cao T., Wang G., Han W., Ye H., Zhu C., Shi J., and et al, “Valley-selective circular dichroism of monolayer molybdenum disulphide”, Nat. Commun., 887, 1-4, 2012. https://doi.org/10.1038/ncomms1882.
[14] Xiao D., Liu G. B., Feng W., Xu X., Yao W., “Coupled Spin and Valley Physics in Monolayers of MoS2 and Other Group-VI Dichalcogenides”, Phys. Rev. Lett., 108, 196802-196821, 2012. https://doi.org/10.1103/PhysRevLett.108.196802.
[15] Zhang K., Bao C., Gu Q., Ren X., Zhang H., Deng K., Wu Y., Li Y., Feng J., Zhou S., “Raman signatures of inversion symmetry breaking and structuraphase transition in type-II Weyl semimetal MoTe2”, Nature Commun., 7, 13552–13558, 2016. https://doi.org/10.1038/ncomms13552.
[16] Zhou Y., Wu D., Zhu Y., Cho Y., He Q., Yang X., Herrera K., Chu Z., Han Y., Downer M.C., Peng H., Lai K., “Out-of-plane piezoelectricity and ferroelectricity in layered 𝛼- In2 Se3 nanoflakes”, Nano Lett., 17, 5508–5513, 2017. https://doi.org/10.1021/acs.nanolett.7b02198.
[17] Zhou X., Sun X., Zhang Z., Guo W., “Ferromagnetism in a semiconducting Janus NbSe hydride monolayer”, J. Mater. Chem. C, 6, 9675–9681, 2018. https://doi.org/10.1039/C8TC03016B.
[18] Duan X., Wang C., Fan Z., Hao G., Kou L., Halim U., Li H., Wu X., Wang Y., Jiang J., Pan A., Huang Y., Yu R., Duan X., “Synthesis of WS2𝑥 Se2−2𝑥 alloy nanosheets with composition-tunable electronic properties”, Nano Lett., 16,264–269, 2016. https://doi.org/10.1021/acs.nanolett.5b03662.
[19] Gong Y., Liu Z., Lupini A.R., Shi G., Lin J., Najmaei S., Lin Z., Elías A.L., Berkdemir A., You G., Terrones H., Terrones M., Vajtai R., Pantelides S.T., Pennycook S.J., Lou J., Zhou W., Ajayan P.M., “Band gap engineering and layer-by-layer mapping of selenium-doped molybdenum disulfide”, Nano Lett., 14, 442–449, 2014. https://doi.org/10.1021/nl4032296.
[20] Lin Z., Thee M., Elías A., Feng S., Zhou C., Fujisawa K., Perea-Lopez N., Carozo V., Terrones H., Terrones M., “Facile synthesis of MoS2 and Mo𝑋 W1−𝑥 S2 triangular monolayers”, APL Mater., 2, 092514–092522, 2014. https://doi.org/10.1063/1.4895469.
[21] Lu A.-Y., Zhu H., Xiao J., Chuu C.-P., Han Y., Chiu M.-H., Cheng C.-C., Yang C.-W., Wei K.-H., Yang Y., Wang Y., Sokaras D., Nordlund D., Yang P., Muller D.A., Chou M.-Y., Zhang X., Li L.-J., “Janus monolayers of transition metal dichalcogenides”, Nature Nanotechnology, 12, 744–749. 2017. https://doi.org/10.1038/nnano.2017.100.
[22] Sant R., Gay M., Marty A., Lisi S., Harrabi R., Vergnaud C., Dau M.T., Weng X., Coraux J., Gauthier N., and et al., “Synthesis of epitaxial monolayer Janus SPtSe”, NPJ 2D Mater. Appl., 4,1-8, 2020. https://doi.org/10.1038/s41699-020-00175-z.
[23] Zhang F., Mi W., Wang X., “Spin-dependent electronic structure and magnetic anisotropy of 2D ferromagnetic Janus Cr2I3X3 (X=Br, Cl) monolayers”, Adv. Electron. Mater., 6, 1900778–1900789, 2020. https://doi.org/10.1002/aelm.201900778.
[24] Lu A. Y., Zhu H., Xiao J., Chuu C.P., Han Y., Chiu M. H., et al., “Janus monolayers of transition metal dichalcogenides”, Nat. Nanotechnol, 12, 744-752, 2017. https://doi.org/10.1038/nnano.2017.100.
[25] Zhang J., Jia Kholmanov I., Dong S. L., Er D., Chen W., et al., “Janus Monolayer Transition-Metal Dichalcogenides”, ACS Nano., 11, 8192-8200, 2017. https://doi.org/10.1021/acsnano.7b03186.
[26] Dong L., Lou J., Shenoy V. B., “Large In-Plane and Vertical Piezoelectricity in Janus Transition Metal Dichalchogenides”, ACS Nano., 11, 8242-8250, 2017. https://doi.org/10.1021/acsnano.7b03313.
[27] Jin H., Wang T., Gong Z. R., Long C., Dai Y., “Prediction of an extremely long exciton lifetime in a Janus-MoSTe monolayer”, Nanoscale, 10, 19310-19351, 2018. https://doi.org/10.1039/c8nr04568b.
[28] Hea J., Li S., “Two-dimensional Janus transition-metal dichalcogenides with intrinsic ferromagnetism and half-metallicity”, Comput. Mater. Sci., 152, 151-152, 2018. https://doi.org/10.1016/j.commatsci.2018.05.049.
[29] Azmoonfar M., Roknabadi M.R., Modarresi M., Mogulkoc A.,” Characterization of two-dimensional ferromagnetic binary and Janus manganese dichalcogenides”, Journal of Magnetism and Magnetic Materials, 556, 169412-169421, 2022. https://doi.org/10.1016/j.jmmm.2022.169412.
[30] Giannozzi P., Baroni S., Bonini N., Calandra M., Car R., Cavazzoni C., Ceresoli D., Chiarotti G. L., and et al, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials”, J. Phys. Condens. Matter, 21, 395502–395521, 2009. https://doi.org/10.1088/0953-8984/21/39/395502.
[31] Kan M., Adhikari S., and Sun Q., “Ferromagnetism in MnX2 (X = S, Se) monolayers”, Phys. Chem. Chem. Phys., 16, 4990–4994, 2014. https://doi.org/10.1039/c3cp55146f.
[32] Baroni S., Gironcoli S. de, Dal Corso A., Giannozzi P., “Phonons and related crystal properties from density-functional perturbation theory”, Rev. Modern Phys., 73, 515–562, 2001. https://doi.org/10.1103/RevModPhys.73.515.
[33] Memarzadeh S., Roknabadi M.R., Modarresi M., Mogulkoc A., and Rudenko A.N., “Role of charge doping and strain in the stabilization of in-plane ferromagnetism in monolayer VSe2 at room temperature”, 2D Mater., 8, 035022–035036, 2021. https://doi.org/10.1088/2053-1583/abf626.
[34] Ataca C., Şahin H., Ciraci H., “ Stable, Single-Layer MX2 Transition-Metal Oxides and Dichalcogenides in a Honeycomb-Like Structure”, J. Phys. Chem. C, 116, 8983- 8999, 2012. https://doi.org/10.1021/jp212558p.
[35] Torun E., Sahin H., Singh S. K., Peeters F. M., “Stable half-metallic monolayers of FeCl2”, Appl. Phys. Lett., 106, 192404-192423, 2015. https://doi.org/10.1063/1.4921096.
[36] Yan J. A., Ruan W. Y., Chou M. Y., “Phonon dispersions and vibrational properties of monolayer, bilayer, and trilayer graphene: Density-functional perturbation theory”, Phys. Rev. B, 77, 125401-125413, 2008. https://doi.org/10.1103/PhysRevB.77.125401.
[37] Mogulkoc A., Modarresi M., and Rudenko A.N., “Two-dimensional chromium pnictides CrX(X=P,As,Sb):Half-metallic ferromagnets with high  curie temperature”, Phys. Rev. B., 102, 024441–024450, 2020. https://doi.org/10.1103/physrevb.102.024441.